On Using Model Checking for the Certification of Iterated Belief Changes

Kai Sauerwald¹ Philip Heltweg¹

¹Chair of Knowledge-Based Systems - University of Hagen

FCR-2021: September 28th, 2021

Agenda

- ► The Certification Problem
- ► Encoding as Model-Checking Problem
- ► Webtool Alchourron
- Evaluation and Improvements

The Certification Problem

(Iterated) Belief Change

- Agents have to adapt their beliefs according to potentially conflicting information
- ▶ Iterated belief change: Modeled by operators over epistemic states¹.
- ightharpoonup Often propositional language $\mathcal L$ over finite signature Σ
- ▶ In the following: $\alpha, \beta \in \mathcal{L}$ denote sentences, Ω denotes set of interpretations

¹In contrast, classical belief revision uses belief sets or belief bases as states.

Belief Revision on Epistemic States [1]

- ▶ Epistemic state: abstract entity $\Psi \in \mathcal{E}$, equipped with a deductively closed set of currently held beliefs $\mathrm{Bel}(\Psi)$
- ▶ belief change operator \circ : \mathcal{E} × \mathcal{L} → \mathcal{E}
- ▶ we assume syntax-independence for o:
 - if $\alpha \equiv \beta$, then $\Psi \circ \alpha = \Psi \circ \beta$
- ▶ instantiation of \mathcal{E} here: total preorders over Ω that fulfil the faithfulness condition $\operatorname{Mod}(\operatorname{Bel}(\Psi)) = \min(\Omega, \leq)$
- lacktriangle therefore every $\leq \in \mathcal{E}$ entirely describes an epistemic state

Postulates

- postulates place restrictions on individual changes or whole operators
- operators are classified depending on what postulates they fulfil
- semantic and syntactic postulates
- ▶ for example Darwiche-Pearl postulates for revision [1], here CR1
 - ▶ if $\omega_1, \omega_2 \in \operatorname{Mod}(\alpha)$, then $\omega_1 \leq_{\Psi} \omega_2 \Leftrightarrow \omega_1 \leq_{\Psi \circ \alpha} \omega_2$

Certification Problem

CERTIFICATION-PROBLEM

Given: A belief change operator \circ and a postulate P Question: Does \circ satisfy the postulate P?

- ▶ A singular belief change from Ψ to Ψ' by α , i.e.: Does $\Psi \circ \alpha = \Psi'$ hold?
- A sequence of belief changes $\Psi_1\circ\alpha_1=\Psi_2$, and $\Psi_2\circ\alpha_2=\Psi_3$, and ...
- ▶ All singular belief changes on a state Ψ , i.e. the set $\{(\Psi_1,\alpha,\Psi_2)\in\circ\mid\Psi=\Psi_1\}$

Encoding as Model-Checking Problem

Approach

- ▶ Define a first-order fragment FO^{TPC} to encode change in epistemic states with new information
- ▶ Build a FO^{TPC} -structure A_C for a concrete belief change $C = (\Psi, \alpha, \Psi')$
- ▶ Load postulate as formula φ and evaluate $\mathcal{A}_C \models \varphi$

Language for Postulates

Predicate	Intended meaning	Exemplary appearance
Mod(w, x)	\boldsymbol{w} is a model of \boldsymbol{x}	$\omega \in \operatorname{Mod}(\Psi), \omega \in \operatorname{Mod}(\alpha)$
$LessEQ(w_1, w_2, e)$	$w_1 \le w_2$ in e	$\omega_1 \leq_{\Psi} \omega_2$
Int(w)	w is an interpretation	$\omega \in \Omega$
ES(e)	e is an epistemic state	$\Psi \in \mathcal{E}$
Form(a)	a is a formula	$\alpha \in \mathcal{L}$
Function	Intended meaning	Exemplary appearance
$op(e_0, a)$	$op(e_0,a)$ is a result of changing e_0 by a	$\Psi \circ \alpha = \Psi'$
or(a,b)	propositional disjunction	$Bel(\Psi \circ (\alpha \vee \beta)) = \dots$
not(a)	propositional negation	$\neg \alpha \notin \operatorname{Bel}(\Psi \circ \alpha)$

$$LogImpl(x,y) := \forall w.Int(w) \rightarrow (Mod(w,x) \rightarrow Mod(w,y))$$

Structure \mathcal{A}_C

```
\begin{array}{ll} \hline \text{Universe} & U^{\mathcal{A}_C} = \Omega \cup \{\Psi_0, \Psi_1\} \cup \mathcal{P}(\Omega) \\ \hline \\ \text{Predicates} & Mod^{\mathcal{A}_C} &= \{(\omega, x) \mid x \in \mathcal{P}(\Omega) \cup \{\Psi_0, \Psi_1\}, \omega \in \operatorname{Mod}(x)\}\} \\ & Int^{\mathcal{A}_C} &= \Omega \\ & ES^{\mathcal{A}_C} &= \{\Psi_0, \Psi_1\} \\ & Form^{\mathcal{A}_C} &= \mathcal{P}(\Omega) \\ & LessEQ^{\mathcal{A}_C} &= \{(\omega_1, \omega_2, \Psi_i) \mid \omega_1 \leq_{\Psi_i} \omega_2\} \\ \hline \\ \hline \\ \text{Functions} & or^{\mathcal{A}_C} &= \lambda \alpha_1, \alpha_2, \alpha_1 \cup \alpha_2 & e_0^{\mathcal{A}_C} &= \Psi_0 \\ & not^{\mathcal{A}_C} &= \lambda \alpha_1, \Omega \setminus \alpha_1 & a^{\mathcal{A}_C} &= \operatorname{Mod}(\alpha) \\ & op^{\mathcal{A}_C} &= (\{(\Psi, \beta, \Psi) \mid \beta \in \mathcal{P}(\Omega), \Psi \in \{\Psi_0, \Psi_1\}\} \setminus \{(\Psi_0, \alpha, \Psi_0\}) \cup \{(\Psi_0, \alpha, \Psi_1)\} \\ \hline \end{array}
```

Webtool Alchourron

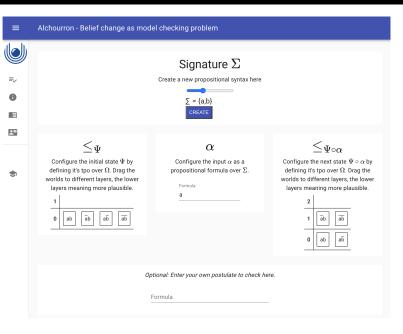
Implementation

- Available online at https://www.fernuni-hagen.de/wbs/alchourron/
- Client-Server architecture
- ▶ Backend: Own Java library, Frontend: Browser with web components
- ▶ Loads postulates in TPTP syntax [3] using scala-tptp-parser [2]

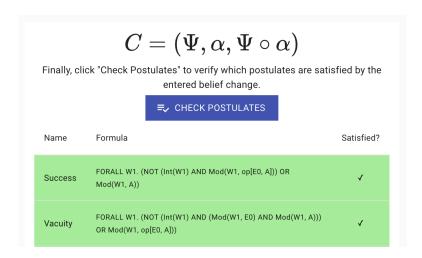
Postulates in TPTP Syntax

```
fof(
    'CR1',
    postulate,
! [W1,W2] : (
        (int(W1) & int(W2) & mod(W1, A) & mod(W2, A)))
        =>
        (lesseq(W1, W2, E0) <=> lesseq(W1, W2, op(E0, A)))
)
```

Input



Output

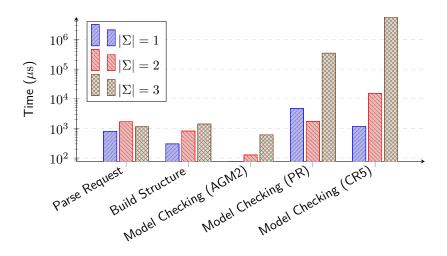


Evaluation and Improvements

Performance Questions

- assumption: size of signature has biggest impact on performance
- lacktriangle possible bottlenecks: parsing request, building A_C , model-checking postulate
- method: measure average times for belief change that fulfils all postulates

Measurement Results



biggest factor: number of quantifiers in postulate formula

Work done

- better parallelism for postulate evaluation and quantified formula evaluation
- response time from 12.5s to 3.9s for signature of size three

Pros and Cons

- $+ \ \, \mathsf{Easy} \,\, \mathsf{to} \,\, \mathsf{extend} \,\, \mathsf{with} \,\, \mathsf{new} \,\, \mathsf{postulates}$
- + Completely automated
- + Potentially able to provide counter examples
- Performance

Future work

- Extend approach to more sub-problems (i.e. whole operators)
- ▶ Performance: Improve formula evaluation

Thank you

- ► Kai Sauerwald, kai.sauerwald@fernuni-hagen.de
- ► Philip Heltweg, pheltweg@gmail.com
- ▶ Try yourself online at https://www.fernuni-hagen.de/wbs/alchourron/

References

- [1] Adnan Darwiche and Judea Pearl. "On the logic of iterated belief revision". In: Artificial Intelligence 89.1-2 (Jan. 1997), pp. 1–29. DOI: 10.1016/s0004-3702(96)00038-0. URL: https://doi.org/10.1016/s0004-3702(96)00038-0.
- [2] Alexander Steen. scala-tptp-parser. Version v1.3. The TPTP syntax specification may be accessed at http://tptp.org/TPTP/SyntaxBNF.html. Apr. 2021. DOI: 10.5281/zenodo.4672395. URL: https://doi.org/10.5281/zenodo.4672395.
- [3] G. Sutcliffe. "The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP v6.4.0". In: *Journal of Automated Reasoning* 59.4 (2017), pp. 483–502.