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Abstract

Belief change research investigates how agents adapt their knowledge with potentially
conflicting information. A common formalization is by epistemic states, abstract en-
tities often represented by faithful preorders. Operators describe how epistemic states
change with new evidence and are classified by which postulates they satisfy. Differ-
ent approaches have been suggested for the problem of iterated belief change. Recent
work introduces uniform revision that revises an agent’s beliefs based on one static total
preorder, therefore lowering representational costs.

In this thesis, an extended epistemic state approach is introduced, based on an agent
deterministically switching between total preorders. Challenges for implementations
in the area of iterated belief change, like textual representation of total preorders, are
pointed out and solutions developed. A tool for the automated certification of postulates
for iterated belief change, called Coeus, is implemented for the new operator. Finally,
the developed software is evaluated empirically. Coeus is publicly available, and most

of its code is open-source.
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1. Introduction

A fundamental skill for intelligent agents is updating their internal beliefs about the
world with new, potentially conflicting information. The field of iterated belief change
discusses a logic-based approach. The dominant framework considers an agent to possess
an epistemic state, an abstract entity containing both its current belief set as well as
a strategy for future belief revision when encountering new evidence. Based on the
paradigm of AGM revision [AGMS85], Darwiche and Pearl [DP97] have shown a model
of iterated belief change as a plausibility ordering over possible worlds.

Because AGM revision only describes limited restrictions, iterated belief revision op-
erators can be very complex. In fact, the amount of possible epistemic states can be
infinite, leading to representational problems for artificial agents. Even if not infinite,
as discussed by Areces and Becher [ABO1], belief revision operators are relative to the
original belief set of an agent and can be very complex. Many suggested operators rely
on constructing new change strategies with every input.

Uniform revision [ABO01, Ara20] proposes an approach to belief revision using a fixed
structure that is not related to any current belief set of an agent. Because the change
strategy itself does not change and can be reused, it provides an automatic solution to
iterated belief revision.

The work investigates a class of revision operators based on the idea of determin-
istically switching between a finite set of preorders depending on input, introduced by
Sauerwald and Beierle [SB21]. The operators are based on a directed graph, called
a deterministic multiform system. This approach leads to an operator that is always
representable in finite size. As every preorder encodes a revision strategy, and the asso-
ciated deterministic multiform system encodes the change between them, this approach
allows for an exploration of both. Since a directed graph underlies the representation
of a deterministic multiform revision operator, methods of graph theory and finite state
machines are applicable.

The goal of this work is to introduce the theoretical foundation of DMF revision
operators and provide an implementation to support future research into DMF operators
and their properties.

The thesis initially introduces uniform revision in the framework of plausibility or-
derings over worlds by Darwiche and Pearl. Based on uniform revision, deterministic
multiform systems and DMF revision operators are defined.

A discussion of desirable properties for general research software is done as an in-



troduction to the implementation. Furthermore, challenges and possible solutions for
implementations dealing with belief revision are presented. A subset of challenges, tex-
tual representation of formulas and tpos as well as performance, are described in detail.

Additionally, a tool is implemented that allows users to define DMF revision oper-
ators by describing deterministic multiform systems. The tool supports exporting and
importing of DMF revision operators so they can be shared in future research. A limited
set of belief revision postulates from literature is automatically checked by the tool using
an extended WHIWAP [SH19] implementation.

To conclude, choices made during the implementation are evaluated, and alternat-
ive options are mentioned. A summary and further research opportunities provide an

outlook.



2. Background

Belief change is the process of an intelligent agent to update its currently held beliefs
with new information. It is often (but not necessarily) discussed in the context of
propositional logic. In this chapter, prior work is introduced, starting with the seminal
approach of AGM revision [AGMS85] for belief sets. Furthermore, iterated belief revision
and a common formalism in the form of epistemic states by Darwiche and Pearl [DP97]
is described. The epistemic state framework provides a basis to discuss alternative
approaches to iterated belief revision like extending epistemic states (e.g., Booth and
Meyer [BM11]) or uniform revision [Ara20]. Uniform revision is introduced in the context
of epistemic states and explained using an accompanying example as it will be the basis

for deterministic multiform revision discussed in Section 3.

2.1. Notation

Let £ be a propositional language over a finite signature 3. Lower case letters a, b, c...
are used to denote propositional variables, lower greek letters «a, 3, for formulas in £
and T, L represent tautology and contradiction respectively. For a set X, P(X) is it’s
power set. = classical logical equivalence.

The set of propositional interpretations is denoted by €, also referred to as (possible)
worlds. A world w €  can be expressed as a sequence of all propositional variables.
Overlining is used to show an assignment of false in the world w. For example abc stands
for a world that assigns a,b to false and c to true.

= stands for propositional entailment. Given a formula o € L, the set of worlds
that satisfy « is denoted by [a]. th(W) stands for the set of sentences true in all
worlds W € Q. Cn(X) = {B]X |= B} is the deductive closure of a set of formulas X.
For ease of notation, the deductive closure of individual formula Cn({a}) is written as
Cn(a). The set of all belief sets (deductively closed sets of formulas over £) is denoted
as B={F|F € P(£) and Cn(F) = F}.

A total preorder (tpo for short) <€  x Q is a total, reflexive and transitive relation.

The strict part of < is denoted as < while ~ stands for its symmetric closure.

2.2. AGM Theory

AGM theory (Alchourrén, Gérdenfors, and Makinson in [AGMS85]) deals with belief
change in belief sets. A belief set B € B is the deductively closed set of propositions an



agent accepts as true at any given point in time [FH11]. Belief change can be categorized
into expansion, contraction, or revision with new information. Expansion is the process
of incorporating a new piece of information that is not inconsistent with currently held
beliefs. Contraction refers to giving up a belief that has become questionable. The
process of belief revision refers to keeping an agent’s set of beliefs consistent while
incorporating new information that can be inconsistent with the current belief set [KM91,
G&g4].

The AGM approach to belief change is defined by a binary function (also called oper-
ators) * that transitions a consistent belief set B and an input sentence « to a consistent
belief set B x . A set of postulates for what is considered rational revision of belief sets
is introduced in [AGMS85] and presented here in the formulation of Aravanis [Ara20].

B x o denotes the revision of a belief set B by a while B + o denotes the expansion.

(AGMx1) B % « is a belief set

(AGM=%2) a€ Bxa

(AGM=3) BxaCB+a

(AGMx4) If ~a ¢ B, then B+a C Bxa
(AGMx5) Bxa | Liff -«

(AGMx6) If Cn(a) = Cn(f), then Bxa = B x 3
(AGMx7) Bx(aNnp)C(B*xa)+f

(AGMx38) If =5 ¢ Bx*q, then (Bxa)+ 3 C Bx*(aAf)

Definition 1 (AGM revision operator for belief sets). Functions * : Bx L — B that map

belief sets and an input formula to a new belief set are called AGM revision operators
for belief sets if they satisfy the postulates (AGMx1) - (AGMxS).

2.3. The Epistemic State Framework

While the original AGM postulates describe a family of functions for belief set revision,
they do not define concrete operators. A constructive approach was presented by Dar-

wiche and Pearl in [DP97]. They distinguish between beliefs an agent accepts and are



part of the belief set and conditional beliefs, beliefs an agent is prepared to adopt with
new evidence. While two agents might have the same current beliefs (i.e., the same be-
lief set), they might still come to different conclusions with new information depending
on their previous worldview. Darwiche and Pearl introduced epistemic states, abstract
entities that include all information an agent needs to encode not only its currently held
beliefs but also a strategy for belief change with future input. This work will refer to

the set of all epistemic states over L as £.

Definition 2 (Belief revision operator in the epistemic state framework). In the epi-

stemic state framework a belief revision operator is a function o : & x L — &.

Since epistemic states are abstract entities, they can only be reasoned over with the
help of a representation theorem that assigns them to a concrete structure. In the
faithful-preorders model introduced by Katsuno and Mendelzon [KM91] and extended
to epistemic states by Darwiche and Pearl [DP97], epistemic states can be equipped with
total preorders over (). For this work, it is assumed that a consistent set of propositions
Bel(¥) can be extracted from every epistemic state ¥ € £. The models of an epistemic
state are defined as the models of its associated belief set, [V] = [Bel(¥)]. So-called
faithfulness ensures the compatibility to Bel(V).

Definition 3 (Faithful assignment [DP97]). A function ¥ —<y that maps each epi-

stemic state to a total preorder on interpretations is said to be a faithful assignment
if:

(FA1) If wy,wy € [¥], then wy ~y wo

(FA2) If wy € [V] and we ¢ [V], then wi <g wa

Intuitively, such a faithful-tpo orders possible worlds according to their assumed plaus-
ibility, with lower-ranked worlds being more plausible than higher-ranked ones. A faith-
ful assignment does not uniquely assign a preorder to a given epistemic state but de-
scribes the structure of a family of preorders assigned to the epistemic state.

In this model, belief revision of belief sets can be expressed as follows.



Definition 4 (Constructing an AGM revision operator from a tpo). For notation, let W
be a set of worlds with W C Q and min(W, <y) denote the set of minimal worlds in W
under <y. An AGM revision operator for belief sets (Definition 1) can be constructed
from this family of preorders with the following condition (as shown by Katsuno and
Mendelzon [KM91]).

B x a = th(min([a], <¢))

Using the condition from Definition 4 and the definition of a faithful assignment

(Definition 3) is the basis for AGM revision operators on epistemic states.

Definition 5 (AGM revision operator for epistemic states [DP97]). A belief revision op-
erator o is an AGM revision operator for epistemic states if there is a faithful assignment
U —<g such that:

[V o a] = min([a], <y)

In this work, all operators are assumed to fulfil the following syntax-independent

condition:
ifa=p,thenVoa=Vo]f

2.4. lterated Belief Revision

A common requirement for belief revision operators is to be able to handle consecutive
inputs, so-called iterated belief revision. For this purpose, an iterated belief revision
operator on epistemic states o transitions an epistemic state ¥ with new information to
Voa. In the next step that state becomes the input for an iteration step by information
p: (W oa)o . Since the AGM postulates only concern revision operator for belief sets,
not epistemic states encoding the strategy an agent is employing to change their beliefs,
they place no restrictions on how these conditional beliefs change.

The following section presents a selection of previous approaches to iterated belief
revision that are relevant to the work, a more general overview can be found from
Peppas [Pepl3].

In the faithful-tpo model, the iterated change of epistemic states can be described by
the change in the family of assigned tpos. Darwiche and Pearl define postulates that
restrict how the orderings (and therefore the epistemic state) undergo change. Their

semantic version is presented here.



(CR1) if wy,wy € [o, then wy <y wg > w1 <gon W

(CR2) if wy,wy € [1a], then wy <g wy <> w1 <ygon W2

(CR3) if wy € [of and wy € [-a], then wy <y ws = W1 <gon w2

(CR4) if wy € [of and wy € [-a], then w; <y ws = W1 <yoa Wo

(CR5) if wy,ws € [af and we € [a], then ws <g wy and wy <y wi; = wWe <gon W1
(CR6) if w,ws € [of and wy € [-a], then ws <y w; and wy <g w1 — We <wyon W1

Another possible solution is to enrich the epistemic state with additional structures to
revise a tpo. One such approach, that revises a tpo by employing an additional interval
based ordering, is described by Booth and Meyer in [BM11]. It is important to note
that, for the enriched epistemic states approach, the problem of iteration also has to be

solved for the new structure.

2.5. Uniform Revision

Most approaches discussed in belief change share the assumption of idealized agents. In
a purely theoretical context, it does not matter how complex a belief change operator is.
However, practical applications have to deal with the limited capabilities of real-world
agents like humans or restricted hardware. In these cases, a belief revision operator does
not only need to work theoretically but must also be computable in a reasonable time.

In their work on iterated AGM functions, Areces and Becher [AB01] point out that
AGM revision operators are relative to a belief set. Therefore, for iterated belief revision,
the revision operator also needs to be revised with every input, increasing complexity.
Instead, they propose true binary functions that directly map any belief set and input
to a new belief set but not change themselves. These functions can be used for iteration,
as the new belief set is a valid input for the same function.

Building on iterated AGM functions, Aravanis [Ara20] discusses uniform revision.
Uniform revision operators encode the change strategy of an agent in a single, fixed
total preorder over all worlds. In this view, the fixed tpo describes rules of the domain
that never change, e.g., laws of physics.

Restricting the structure to only one total preorder has considerable benefits. In

contrast to other revision operators, the representational costs for uniform revision are



low as a single tpo completely defines an operator. As a result, uniform revision operators
are simpler to understand and define than approaches that encode a tpo for every possible
epistemic state. Lastly, because the tpo does not change with input, uniform revision
can be used for iterated revision without additional overhead: The same operator is
defined for every possible belief set of an agent and can be reused.

Aravanis gives a constructive approach for uniform revision operators by considering
a total preorder < over all worlds that is fixed and independent of the state of an agent.
It encodes the domain knowledge of the agent that is separated from its concrete belief

set.

Example 1. As an accompanying example, consider an agent deciding if they can buy
bread or not. Let a represent "Bakery A is open”, and b represent "Bakery B is open”.

Normally, one or both bakeries will be open. A fixed tpo in uniform revision =,
representing the agents assumptions could be ab ~ ab ~ @b < ab.

Booth and Meyer [BMO06] introduce a visualization of tpos as a linearly ordered set
of ranks. The ranks of worlds in a tpo < are defined as the equivalence classes modulo
the symmetric closure of <: [[z]]. = {y | y ~ z} and then ordered by the relation
[[z]] < [[y]] iff x <y. A similar visualization will be used in this work, Figure 1 shows <
with the ranks ordered by plausibility from bottom to top and their index on the left.

The most plausible worlds are shown in the lowest rank with the index 0.

=
1 ab
0 | ab,ab,ab

Figure 1: A tpo for Example 1, visualized as an linearly ordered set of ranks, lower ranks
are more plausible.

Let U, ® € £ be epistemic states. In the epistemic state framework, a uniform revision
operator is induced from =< by a faithful-tpo <y that satisfies one of the following

conditions.

(URF1) For any wy,ws ¢ [V], w1 <g wq iff w1 < wy

(URF2) For any wy,ws ¢ [¥] U [®], w1 <y ws iff wi <o wy



The condition (URF1) means that any worlds not in the belief set of the agent are
ordered according to <. A condition that does not require < is (URF2). Any worlds
that are not in both belief sets are ordered equivalently for any two epistemic states.
(URF1) holds for a tpo iff (URF2) holds ([Ara20]).

These conditions define a set of preorders, one for every belief set B € B. From this,
an AGM revision operator is defined by Definition 4. An operator constructed in this

manner is referred to as uniform revision operator *;g.

Example 2. Let the agent be in a state U assuming both bakeries are open: [V] = {ab}.
A tpo <y, faithful to [¥] and satisfying (URF1) for the fixed tpo < from Example 1,
is shown in Figure 2. Notice how the world ab is in the most plausible rank (due to the
faithfulness from Definition 3). All worlds that are not in [¥] are ordered according to
the fixed tpo <. The tpo <y defines a uniform revision operator, in relaxed notation ,

as described in Definition 4.

<v
2| ab
1 | @b, ab
0 ab

Figure 2: A tpo <y, faithful to [¥] = {ab}

The agent now learns a local festival is taking place. During some festivals, either
essential businesses like bakeries have to close, or both will be open due to the increased
demand. An input modeling this could be a = a <+ b. Because this information is not
contradictory to the current belief set of the agent, [Bel(V) x o = {ab}.

S\I/*a
2| ab
1| ab,ab
0 ab

Figure 3: The tpo from Figure 2 stays the same after revision by a = a <> b.

In a second step, the agent learns that Bakery A is closed, = —a. This information
forces the agent to revise its belief set because —a is contradictory to its currently held
belief of aAb. With the same construction, the uniform revision is [Bel (V) *ax/3] = {ab}.
The faithful tpo <g..«s that satisfies (URF1) as well is shown in Figure 4. In this case,



revision by —a causes the agent to ignore the previous information and conclude that b,
Bakery B is open. The new belief makes sense under the laws for normal days but fails

to take into account special holidays.

S\Il*a*ﬁ
2 ab
1| ab,ab
0| ab

Figure 4: The tpo for ¥ % « x 8 after uniform revision by g = —a.

Notice that the revision ignores historical information because a uniform revision
operator is always defined relative to < and the current belief set of an agent only. As
long as the current belief set is the same, any previous history does not influence the

revision.
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3. Deterministic Multiform Revision

As introduced in Subsection 2.5, uniform revision is a simple and efficient form of belief
revision. However, it is also more limited than other approaches. Multiform revision
aims to build on uniform revision to make it more flexible but keep the main advantages
of low representational costs and intuitive definition. The core idea of deterministic
multiform revision is to extend uniform revision with concepts of finite state machines
of computer science [SB21].

Conceptually, multiform revision encodes a finite set of contexts (in the form of tpos
=< as in uniform revision) and rules for switching between them in a directed graph,
called a multiform system. While agents change their contexts with new information, the
underlying system does not need to be revised. Because the tpos in the multiform system
induce different uniform revision operators, an agent is essentially changing between a

finite set of uniform revision operators with new information.

3.1. Multiform Systems

Multiform revision is an approach to iterated belief revision build on the idea of enriching
the epistemic state (as discussed in Subsection 2.4). A multiform system describes a
finite set of contexts and rules for switching between them that an agent can utilize for

its revision strategy.

Definition 6 (Multiform System). A tuple M = (T, E) is called a multiform system
(for L) if T is a finite set of total preorders over Q and E CT x L x T.

A multiform system can be thought of as a directed graph with the nodes being total

preorders and edges labeled with formulas. Figure 5 shows an example of a multiform

system.
=1 a—=b =2
2| ab (4 ——~ 2| ab
L|abab | g 1 ab
0 ab aVb 0| ab,ab

Figure 5: Example of a multiform system as a graph

This work assumes the additional restriction of only deterministic change between

tpos. A multiform system that allows only a single context transition with new inform-

11



ation is called deterministic and abbreviated as a DMF system. DMF systems discussed
in this work are assumed to be deterministic and syntax-independent multiform systems.

For ease of notation, let E(=,«) refer to the set of total preorders that is directly
reachable from =< via the a edge: {=' [(X,a,=’) € E}. Additionally, E(=,«a) == is
used to refer to E (=X, ) = {='}.

Definition 7 (Deterministic Multiform System). A multiform system M = (T, E) is
called a deterministic multiform system if |E(=X,«)| = 1. A multiform system is called
syntax independent if o« = 5 implies (X, a, =) € E iff (X,5,=3') € E.

Similar to the tpo < in uniform revision, DMF systems do not change with new in-
formation. Instead, the enriched epistemic state of an agent contains enough information

to construct a belief revision operator for new input and transition to a new context.

3.2. Deterministic Multiform Revision

In the epistemic state framework, an epistemic state ¥ € £ is an abstract entity encoding
the currently held beliefs and change strategy of an agent. A possible instantiation of
these abstract entities is a tuple of belief set and a tpo from an underlying DMF system
called a DMF system state.

Definition 8 (DMF system state). Let M = (T, E) be a deterministic multiform system.
A tuple (B, =) is referred to as a DMF system state of M, denoted as s™ if B € B is a
belief set and <€ T is a tpo over €.

A DMF system state encapsulates the beliefs of an agent. It defines its currently
accepted beliefs in the form of a belief set B. In addition, it defines the context (what
Aravanis calls "state-independent dynamics of a particular domain” [Ara20]) for its
decision making by referencing a tpo <€ T

In contrast to uniform revision, a DMF system state (with the underlying DMF system
M) allows an agent to change between a finite set of prepared contexts 7' with new
information. These context switches could, e.g., represent different legal frameworks
like switching from common law in the USA to civil law in Germany. Similarly, different
contexts could play a role in medical diagnosis. For example, new laboratory results that
could indicate pregnancy would lead to different assumptions if the context is a male
patient. For a topical example at the time of writing, an agent would be more likely to
diagnose the common flu instead of COVID-19 if the context is a vaccinated patient.

Compatibility with the belief set of an abstract epistemic state W with a concrete

DMF system state over M, s is ensured by a DMF system state assignment.

12



Definition 9 (DMF system state assignment). Let M be a deterministic multiform
system. A function U s s¥ mapping each epistemic state to a DMF system state

si = (By, =y) of M is called a DMF system state assignment over M if Bel(¥) = By.

The information encoded in a DMF system state induces a uniform revision operator
to revise belief sets. The context tpo <& T of the DMF system state is comparable to
the unique, fixed tpo in uniform revision. It defines a set of tpos (one for every belief
set), as described in Subsection 2.5 from which a tpo is selected for being faithful to
Bel (V).

Definition 10 (Revision operator induced by a DMF system state). Let s be a DMF
system state and <€ T its context tpo. For every belief set B € B a unique tpo <p 1is
induced by:

 Satisfying condition (URF1) / (URF2) in regards to <
o Being faithful in regards to B

The tpo <p defines an AGM revision operator for belief sets as per Definition 4:

B x a = th(min([a], <))

This revision operator will be referred to as oM B x L — B and is defined for any
DMF system state si. It is a uniform revision operator in regards to <, as defined by

Aravanis [Ara20].

The revision operator induced by a DMF system state *,m plays a central role in the
revision of epistemic states based on a DMF system M. Intuitively, an agent employs
uniform revision (in the current context <) to revise its belief set. Expanding on uni-
form revision, the agent also optionally switches the overall context, depending on the
underlying DMF system.

More formally, let M = (T, E) be a deterministic multiform system and s} be the
DMF system state assigned to an epistemic state ¥ by a DMF system state assignment.
The uniform revision operator induced by s/ is denoted as M Then a DMF system

revision operator for epistemic states is defined in the following manner.

Definition 11 (DMF system revision operator for epistemic states). A revision operator

for epistemic states o : EX L — £ is called a DMF system revision operator for epistemic

13



states if there is a DMF system state assignment U +— si over M such that s}t =

(Byoa, Jwoa) for every U and « as follows:

Byoo = By *sy a

and

=i Ry, %) EER
=Woa=
<g otherwise
A problem that arises in similar approaches to iterated revision with enriched epi-
stemic states (e.g., for Booth and Meyer [BM11]) is the need for an additional revision
strategy of the new structure. An advantage to revision based on DMF systems is that
the underlying structure can stay static and does not need to be revised with new in-

formation. Definition 11 is therefore sufficient to define an approach to iterated revision.

Definition 12 (DMF system revision operator for belief sets). Let o be an DMF system
revision operator for epistemic states according to Definition 11 for a DMF system M.
A revision operator for belief sets x : B x L — B is called a DMF system revision
operator for belief sets if there is a DMF system state assignment W + s}/ over M with
s¥ = (By, <y) such that Bel(¥) * a = Byoq for every ¥ and a.

Intuitively, an agent employing DMF revision extends uniform revision by switching
between a finite set of contexts T' (and therefore a finite set of uniform revision operators)
depending on new information. Reasons for those context switches are encoded in the
edges F of the underlying DMF system M. As long as new information does not lead
to a context switch, the agent revises their belief set using the same uniform revision
operator. After receiving information that leads to a context switch, the agent revises

their belief set and changes to a new uniform revision operator.

3.3. Postulates and DMF Revision

In literature, belief revision operators are grouped into classes that are defined by a set
of postulates. Well known examples are the previously stated AGM postulates (AGMx1)
- (AGMx8) [AGMS5] for the class of rational revision operators or the Darwiche and
Pearl postulates (CR1) - (CR6) [DP97]. Following the introduction of DMF revision

operators, the following sections will discuss how to approach their classification.

14



The approach is twofold. First, a representation of a DMF system state as a derived-
faithful tpo is introduced. Second, a browser-based software, called Coeus, is presented
that allows the automated verification of operators for a belief change step, extending
a previous implementation called WHIWAP by Sauerwald und Haldimann [SH19]. The
implementation allows for empirical research into belief change based on DMF' revision
operators and can be used in further research or didactic purposes.

Postulates in literature are commonly given either as syntactic postulates or semantic
postulates. Syntactic postulates describe changes of belief sets, while semantic postulates
describe changes in a semantic domain, e.g., the common faithful preorder formalization.
Often, representation theorems exist to express syntactic postulates in the semantic
domain.

WHIWAP (and by extension Coeus) verifies belief change postulates by checking the
difference between epistemic states represented by tpos. A derived-faithful tpo to a DMF
system state is introduced here to verify postulates in the semantic domain of faithful

preorders for DMF revision steps.

Definition 13 (Derived-faithful tpo to a DMF system state). A tpo <y is called
derived-faithful to a DMF system state sY = (By, <y) iff:

1. It is faithful to the belief set By of si!: By = th(min([T], <su))

2. Other conditional beliefs encoded by it align with the state context <y: For any

wi,ws & [By], wi SsM W iff w1 2y wo

These conditions correspond to the constructive approach used in Definition 10. Con-
dition 2 is equivalent to (URF1) by Aravanis [Ara20], inducing a family of tpos for <y.

A unique tpo Som s selected from that family by condition 1 and the belief set By of

si.

Because the derived-faithful tpo fulfills the faithfulness condition, it encodes the same
currently held beliefs as the belief set By of the agent in the DMF system state instan-
tiation.

The AGM revision operator constructed from a derived-faithful tpo according to Defin-
ition 4, represents the same revision strategy for belief sets encoded in the DMF system
state itself. Condition 2 ensures that the belief revision operator induced by the derived-
faithful tpo is equal to the revision operator induced by the DMF system state according
to Definition 10. The conditionally held beliefs, in the form of a plausibility ordering

over worlds, also align to the context tpo from the DMF system state.
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For a single belief change based on DMF revision with a DMF system M, Coeus
verifies postulates for the derived-faithful tpos of the prior and posterior epistemic state.
The structure of M restricts how the derived-faithful tpos can change and therefore

influences what postulates are fulfilled with each change.

Example 3. Recall the situation introduced in Example 1 and discussed for uniform
revision in Example 2. While relying on uniform revision, the agent encoded the unchan-
ging rules of the environment in one fixed tpo <. Because the opening of local bakeries
is managed differently depending on holidays, this could lead to wrong conclusions.

In DMF revision, these different contexts can be modelled. A minimal DMF system
M = (T, E) with two contexts T = {=1,=2} and edges £ = {(=1,a < b,=3), (=X
,a Ab,=1)} is shown in Figure 6. The tpo =; is equal to < of Example 2, encoding the
laws for normal days. However, the agent switches its context to <5, encoding laws for

a holiday, when receiving the information a <> b.

< | [ <
1 ab 1| ab,ab
0| ab,ab,ab ———Y| 0 | ab,ab
a<>b

Figure 6: A DMF system for Example 3

An initial DMF system state that represents the agent assuming that both bakeries

are open on a normal day is s}f = (Cn(a A b),=). Figure 7 shows its derived-faithful

tpo.
SSM
A
2 ab
1| ab,ab
0 ab

Figure 7: The derived-faithful tpo <, to the DMF system state sif = (Cn(a AD), =y)

On learning that a holiday means either both or no bakeries will be closed (o = a <> b),
the agent revises its epistemic state according to Definition 11. As in Example 2, because
the input does not contradict the current beliefs, its belief set stays the same. In contrast
to uniform revision however, the agent does switch its context tpo from =<; to <y over
the edge (=1,a <> b, <9).
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The new DMF system state is s} = si! = (Cn(a A D), =5) and its derived-faithful
tpo is displayed in Figure 8. Notice how the agents conditional beliefs, the beliefs it is
prepared to accept with new information, have now changed to the new context.

In this way, DMF revision allows an agent to take historical information into account
for future revision. Any information that does not substantially change the context can
still be ignored, like in uniform revision. However, if an input changes the fixed rules of
the domain (in this case, laws for the opening of businesses), the agent will also change

its revision strategy accordingly.

Figure 8: The derived-faithful tpo <. to the DMF system state s¥ = (Cn(a AD), =y)

In this example, when learning Bakery A is closed (8 = —a), the agent comes to a
different conclusion than in Example 2. Because of the change in context tpo from < to
=» the minimal model of 3 is now min([5], <) = {ab}. Accordingly the agents new
DMF system state will be s¥' = s§ 5 = (Cn(—a A =b), =3) and it concludes —b, Bakery

B is closed as well. The corresponding derived-faithful tpo <. is shown in Figure 9.

<M
2 El;, ab
1 ab
0| ab

Figure 9: The derived-faithful tpo <, to the DMF system state s&' = (Cn(—aA—b), <)
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4. Towards Automated Certification of Postulates

Parts of this section were already published in joint work with Christoph Beierle and
Kai Sauerwald [SH21, SHB21].

Iterated belief change often is frequently modeled by operators over epistemic states.
These postulates are axiomatically classified by which postulates they fulfill, e.g., the
Darwiche and Pearl postulates for iterated belief revision introduced in Subsection 2.4.

Therefore, a common problem is checking if a given postulate is satisfied by a belief
change or a whole operator, more formally: Given a belief change operator o and a
postulate P, does o satisfy P? In this work, the problem will be called the Certifica-
tion Problem. Several sub-problems were identified to approach the automation of the

certification problem:

1. A singular belief change from ¥ to ¥ by «
2. Tterated belief change with consecutive sentences «, [, ...

3. All singular belief changes on a state W

The following sections identify challenges and possible solutions to automate the cer-
tification of postulates. A concrete implementation for iterated belief revision based on

DMF revision is presented in Section 5.

4.1. Goals

A previous implementation for certification of a singular belief change was available
with WHIWAP [SH19]. This work aims to extend WHIWAP in multiple ways. First
by carefully formalizing the approach using model-checking in cooperation with Chris-
toph Beierle and Kai Sauerwald [SH21, SHB21]. Second, by developing a tool for the
automated certification of postulates in DMF revision that is highly modularized and
can be extended further. Finally, by allowing users to submit multiple inputs, therefore
verifying postulates for consecutive belief changes.

The implementation can support researchers with experimental studies of belief revi-
sion. Additionally, it has applications in an education environment to show a concrete
approach to iterated belief revision. As a guideline during development, the following

goals were identified:

1. Simple distribution and setup to make it accessible to a wider audience
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2. Allow configuration of more than one belief change

3. Visualizations and automated computation of the next epistemic states for in-

creased ease of use

4. Configuration should be shareable, both to support researchers in distributing their

findings as well as to provide examples for students

5. Extensibility with new, potentially user-defined postulates to aid experimental

studies

In addition, as a software artifact, it should also fulfill a baseline of properties inde-
pendent of belief revision itself. The FAIR principles were considered as starting point.
Originally defined for data by Wilkinson et al. [WDAT16] they provide a guideline for
managing research artifacts to increase future impact. They have been expanded to

research software by Hasselbring et al. [HCH"20]. The principles are:
1. Findable: Be easy to find and cite
2. Accessible: Provide a way to download a software snapshot

3. Interoperable: Use existing standards and target as many runtime platforms as

possible
4. Reusable: Modular and easy to extend, follow good software development practices

In the context of research software, the FAIR principles increase reproducibility and
reusability. Because the tool should be useful for experimental studies, it must be easy
to configure and share by other researchers as well. The exported configuration should
be in an open and standard format. Additionally, the tool will likely be extended with
future work by students. Making the software modular and following good practices like
automated testing will make their contribution easier.

Finally, to support the concrete application of belief revision by DMF revision, the
tool should:

1. Support the configuration of a DMF system and initial DMF system state

2. Allow a user to create a belief revision input and definition of a subsequent DMF

system state

3. Compute derived-faithful tpos for the prior and posterior DMF system state and

verify if they satisfy a set of postulates or not
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4.2. Encoding as Model-Checking

By employing model checking, the certification of a belief change satisfying a postulate
or not can be completely automated. In addition, the approach extends naturally to new
postulates. The same algorithm can be reused to certify belief changes by providing a
postulate as a first-order formula. It would also be possible to provide counterexamples
for postulates that are not satisfied by a belief change. The main challenge to employ
model-checking is the scaling with input size, meaning considerable work has to be done
for performance optimization.

During the writing of this thesis, the approach was described in more detail by Chris-
toph Beierle, Kai Sauerwald, and the author in a paper. The results were submitted
and accepted at the International Workshop on Nonmonotonic Reasoning 2021 [SHB21],
an extended version was accepted at the Workshop on Formal and Cognitive Reasoning
2021 [SH21]. A summary is provided here.

First, a first-order logic fragment FOTFC (for "Total Preorder Change”) is defined to
encode changes in epistemic states with new information. Based on this language, a
FOTPC_structure A¢ is created for a belief change step C' = (¥g, a, ¥;) from a prior epi-
stemic state ¥y to a posterior epistemic state ¥, by input a. Postulates are represented
as formulas over FOTPC. A postulate, represented by a formula ¢ is then satisfied by
the belief change C' iff Ax F .

An initial study of belief change literature [DP97, BM06, JT07, Boo02, NPP03] was
done to define a minimal set of predicates and functions commonly found in postulates.
An overview is shown in Figure 10, examples include predicates such as Mod(w, x) (w
is a model of x), Int(w) (w is an interpretation) or functions like op(eg, a) (the result
of changing ey by a). ey and a are reserved as constants to refer to the prior epistemic
state and the input formula, respectively.

From this minimal set, additional predicates can be constructed as needed, e.g., logical

implication:

LogImpl(z,y) = Yw.Int(w) — Mod(w,z) — Mod(w,y)

A finite FOTPC-structure A¢ is created for a singular belief change C. Its universe
consists of all interpretations €2, all formulas from L, all epistemic states £ as well as
the prior and posterior epistemic states and the input formula from C. Formulas are
identified by their models because of the assumed syntax-independence. The predicates

and functions are interpreted straightforwardly as defined in FOTPC. The full structure
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Predicate Intended meaning Exemplary appearance

Mod(w, z) w is a model of = w e [¥],w e [o]
LessEQ (w1, ws,e) wy < wsg in e wy; <y Wy
Int(w) w is an interpretation w e
ES(e) e is an epistemic state Vel
Form(a) a is a formula acl
Function Intended meaning Exemplary appearance
op(eo, a) op(ep, a) is a result of changing ey by a Voa=1U
or(a,b) propositional disjunction BelVo(aVp)=...
not(a) propositional negation -« ¢ BelV o o

Figure 10: Allowed predicates and functions symbols in FO™C, their intended meaning
and how they are typically formulated in belief change literature [SH21]

is described in Figure 11.

Universe UAe = QU {¥,, U, } UP(Q)

Predicates
ModAc = {
IntAc =Q
ESAc = {Wy, U}
Form#c =P(Q)
LessEQA® = {(w1, w2, ¥;) | w1 <y, wa}

Functions
orc = oy, 0. 0q Uy €0AC =Y,
notc = \ay.Q\ ay ac = [a]

OpAC = ({(\P7B> \Ij) ‘ ﬁ S /P<Q)7\Il S {\1[07‘1j1}} \ {(\P07a7 qu}) U {<\1107O‘7 \Ill)}

Figure 11: Structure A¢, encoding a singular change C' = (Vy, o, Uy) [SH21]

Common ways to define postulates are syntactic postulates (describing changes in be-
lief sets) or semantic postulates (describing changes in a semantic domain, often faithful
preorders). FOTFC is a language to describe semantic postulates. Representation the-
orems exist for most syntactic postulates that connect them to equivalent semantic

OTPC

postulates. Postulates can be expressed as formulas over F For example, the

success postulate (AGM#2):

vacmz = VW 1((Int(W1) A Mod(W1,0p(EQ, A)))) — Mod(W1, A)

A belief change C' then satisfies the postulate Y agae iff Ac F @agae holds. Other
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postulates can be represented as formulas over FOTFC in the same way and checked

with the same structure Ac.

4.3. A DMF revision operator

Constructing the derived-faithful tpo <qu to a DMF system state s3! is an important
step in the implementation. Algorithm 1 shows a possible algorithm, keeping the order
of worlds not in [By] aligned to <y and fixing all worlds in [By] in the most plausible

rank.

Algorithm 1: Get derived-faithful tpo for DMF system state

Input: DMF System State s = (By, <y)
Result: Derived-faithful tpo <om
SSM: (Z)

4
foreach (w,w') €<y do

if w,w’ ¢ [By] then

| <ar=<a U {(w,w)}

end

end

foreach w € [By] do
<o =< U{(w,w) |w €Q—[Be]}

end

With the ability to compute derived-faithful tpos to DMF system states, a DMF

revision operator according to Definition 11 can be implemented as follows:
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1. Construct Sy for the initial DMF system state s}/, encoding a revision operator

*su as described in Definition 10

2. Compute Byoo, = By gl Y

a) The minimal models of the input « in §sé’4 define the belief set of ¥ o o
[Bel(V o )] = min([a], <)

b) Set Byoo = th(min([a], <))

3. Find j\poa

a) Find an outgoing edge e from the context tpo <y in M over a formula that

is semantically equivalent to a: (<Xy, 5, =) with § = «

b) If e exists, set <yoq:==', otherwise <gon ==y

4. Set si = (Byoa, Swoa)

4.4. User Experience

Any software that is meant to be used for empirical research should provide an intuitive
user experience. This is particularly true for tools that can be used in a didactic setting
to explain complex concepts to students.

During the automated certification of postulates in belief change, a user has to con-
figure multiple inputs. Firstly, some form of initial agent state and new information
that the agent learns. If no automated belief revision is implemented, a user also has
to provide the posterior agent state by hand. The tool Alchourron, described in [SH21],
takes this approach. Users can configure a prior and posterior agent state on a single
page. This allows the tool to abstract from a concrete belief change operator but places
more configuration work on the user. The approach works for Alchourron because the
chosen instantiation of an epistemic state is a simple tpo over €2, and it only handles a
single belief revision.

In contrast to Alchourron, the goals for this work were to automate DMF revision
and allow for multiple belief change inputs. Additionally, the instantiation of epistemic
states with DMF system states is not as simple as with a tpo. Users will need to
configure a DMF system M and an initial DMF system state. Result display will also
be more complex because the certification of postulates happens for every configured

belief change step.
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Because of the added complexity, it will make sense to break up the user interface
into multiple sections. At the very least, the configuration and result display sections
should be split. Relevant information from previous steps should still be available on-
demand (e.g., the underlying DMF system M will stay relevant while configuring a DMF
system state) but hidden as long as the user does not need it. For the results, a filter
for postulates that are satisfied by all configured belief changes would allow for a quick
overview.

Most importantly, it will be helpful to discuss the interface with actual users of the

tool and iterate on it with feedback.
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5. Coeus: Implementation Details

An implementation to support future research on DMF revision is the primary goal of
this work. The resulting software is named Coeus after the greek titan representing
rational intelligence, Kotoc (meaning query or questioning). Coeus is available online
at http://coeus.rhazn.com. Most components are open source and can be retrieved
digitally. In addition, the digital media accompanying this work contains all source code
(as described in Appendix A).

Here, Coeus will refer to the complete software as found at http://coeus.rhazn. com,
consisting of a backend server written in Java and a browser-based frontend built on
TypeScript.

The implementation will be presented by first outlining identified challenges. A walk-
through of the developed tool is included as context for the following chapters. They
present an overview of the architecture and details on every module, from the server-side
API to the browser-based frontend. Solutions to major challenges like textual represent-
ation are presented in their own chapters when appropriate. The algorithm to implement

a DMF revision operator itself closes the chapter.

5.1. Implementation challenges

The stated goals from Subsection 4.1 pose a variety of challenges for the realization of
an application. They can be divided into technical challenges for the implementation
and approaches to communicate the dense amount of information to users.

On the technical side, in addition to an implementation of generic first-order logic,
support for common tools from belief revision like total preorders is needed. For this
reason, the tool presented here extends an existing institutional library called logical-
systems, written in Java. A possible solution to making the software easy to share and
install would be to provide it as a browser-based application. At the time of writing, no
adequate library to work with belief revision was available for browsers. Providing own
implementations and interacting with the existing implementation in logical-systems will
therefore be a challenge.

A general problem for browser-based applications is the quick rate of change for stand-
ards and frameworks. In addition, with browser-based applications becoming more and
more complex, a number of frameworks were created, leading to incompatibilities of
implementations between them. Careful attention to modularization and good software

practices will be needed to ensure the tool can be supported with future changes.
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Furthermore, automated certification of postulates for belief changes is a complex
problem. The approach using model-checking is prone to performance problems with
larger input sizes. The existing implementation is hard to extend because postulates
are implemented directly in Java and can not be changed without recompilation and
deployment.

Therefore, the topic of textual representation is relevant to extend logical-systems
with new postulates. A format for a formula must be chosen to load new postulates
from files or allow users to provide their own. No clear standard is available but various
options for a syntax like TPTP [Sutl7], InfoCF [Kut19] or TeX exist. Likewise, total
preorders are part of DMF revision and have to be encoded as text to support exporting
and importing Coeus configurations. Similar to formulas, no clear standard exists for
a textual representation of total preorders. Because of their growth in size with larger
signatures, any solution will also need to be efficient.

As discussed in the previous chapter, communicating complex information to users
will also be a challenge. Coeus will need to be carefully broken up into smaller parts
not to overwhelm researchers or students. A special focus has to be applied to providing
auxiliary information in a way that does not interfere with the main flow of configuring

belief revision steps.

5.2. Coeus Walkthrough

A short introduction of the final implementation is presented here. All screenshots are
showing the tool configured for the DMF belief revision described in Example 3. The
configuration was exported and can be downloaded from the website.

Coeus allows users to complete the following steps:

1. Define a signature ¥ or import a previous configuration
2. Create a DMF system M

3. Configure the initial DMF system state s}/

4. Set up one or multiple inputs for (iterated) belief revision

5. See a list of postulates from the literature and if they are fulfilled or not for each

belief revision step, optionally test their own postulate

6. Optionally export their work
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To begin, the user has to configure a signature ¥ or can optionally import previous
work. Figure 12 shows the currently defined signature and the ability to configure a new

signature using the slider.

Signature Create new
The current signature Signature
—_— You can create a new signature
z ={ab}

Figure 12: Configuring a signature

The next screen allows the user to set up a DMF system M in two ways, either as a
list of nodes and edges (Figure 13) or as a graph (Figure 14). In any case, the individual
tpos and edges can be selected and changed on the right-hand side.

EDIT AS LIST EDIT AS GRAPH Edit Element
Total preorders <€ T Edgese € E
jo -i 9[)3("_<0,CL{—>E},"_<1) -i joe T
—<1 i 61:{:‘1:[0"'\5):50) i 2

1
@ ADD .E

eo: (Zo0,a < b, <4)

fram

=0 M
Formula in TPTP syntax (tptp.org)
|a <==>h

to

=1 v

Figure 13: DMF system configuration as list

The initial DMF system state s} of an agent is defined next. Figure 15 shows the

screen that displays the current state on top and shows a dropdown to select the initial
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EDIT AS LIST EDIT AS GRAPH Edit Element
Graph

=0T

|

eo: (Zo,a <> b, <1)

fram

=]

=0 v
Formula in TPTP syntax (tptp.org)
|a <=>h

to

=1 v

Figure 14: DMF system configuration as graph

context tpo from M as well as input fields for formulas in the belief set.

After configuring the initial state of the system (by defining the DM system M and
the initial DMF system state of the agent s} ), the user can create one or multiple belief
revision inputs. Figure 16 shows the belief revision input. The current DMF system
state s}/ is shown in the left box (along with overlays for its derived-faithful tpo g
and the context tpo from M). When the user enters an input formula « in the center,
Coeus automatically computes the posterior DMF system state si. and shows it on
the right side.

Belief revision steps can be saved by pressing "Perform Revision” and are then dis-
played, in reverse order, below the input as shown in Figure 17.

The final screen of Coeus is the results panel. The settings (see Figure 18) allow the
user to define their own postulate to certify, filter postulates by name, or only show
fulfilled postulates.

Results are shown in two ways. A result overview (shown in Figure 19) displays all
belief revision steps in one table and allows the user to see which revision inputs are
satisfying what postulate. For a more detailed view, each individual input is displayed
as shown in Figure 20. In this view, the user can also check the derived-faithful tpos

and context tpos again and see the formulas for the certified postulates.
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Starting DMF State

s¥: (Cn((a A b)), =0)

Change context Change belief set
;; . Belief #0 |
la&b |

Add new belief

Formula

Formula in TPTP syntax (tptp.org)

Figure 15: Initial DMF system state

Current DMF State Belief revision input Posterior DMF State

DMF System State New Input o in tptp syntax DMF System State
ut e |
sg: (Cn((=b A —a)), 1) $Yeat (Cn((a A D)), =1)

B |

Derived- Context Derived- Context
faithful tpo tpo + PERFORM REVISION faithful tpo tpo

=
gt

=1 =yl

DMF System

M

Figure 16: Input for a belief revision step

5.3. Architecture Overview

To achieve the goals defined in Subsection 4.1, Coeus is implemented in a Client/Server

architecture using a browser-based frontend. The choice allows for easy distribution and
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Configured iterated belief revision steps

Revision #2
Prior DMF State Input: Posterior DMF State
Wk
DMF System State DMF System State
sy (On((a b)), <1) sz, (Cn((=b A —a)), <)
Derived- Context Derived- Context
faithful tpo tpo faithful tpa tpo
Sy =1 sl =1
Revision #1
Prior DMF State Input: Posterior DMF State
a+ b
DMF System State DMF System State
syl (Cnf(a A b)), <o) Edge transition s (Cnf(a A b)), =1)

eo: (Zo,a < b, =)

Derived- Context Derived- Context
faithful tpo tpo faithful tpo tpo
=0 <

<
=8y, [ 8§,

Figure 17: List of iterated belief revisions

setup of the tool while still using the increased computational power of a server.

The majority of logic and calculations are done using an existing logic library called
logical-systems [Sau2l], written in Java. The server-side library provides the ability to
verify whether a belief change, expressed with a prior and posterior tpo as well as an
input formula, satisfies a given postulate or not. In addition, it was extended with
functionality to load postulates from a textual representation.

The library was exposed to clients with an additional Java project (called postulate-
check-server) that provides a set of HTTP endpoints. It allows clients to use some
functions of the underlying library over HT'TP as well as implements various custom

endpoints to support DMF revision.
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Settings

Check custom postulate (optional)

Formula in TPTP syntax (tptp.org)

Filter Postulates
By Postulate Name

I Show only satisfied by all

Figure 18: Settings for result screen

Results Overview

Postulate Revision #1 Revision #2
CR1 + v
CR2 + v
CR3 ¥ v
CR4 ¥ v

Figure 19: Results of all revision steps as overview

Finally, a web-based client was written in TypeScript. TypeScript was chosen for its
strict type system in contrast to relying only on Javascript. The frontend consumes the
API endpoints provided by the server and adds an interface for users to configure DMF
systems, DMF system states, and belief revision inputs. In addition, it allows users to
export and import their work.

The high-level architecture is shown in Figure 21.

A modular approach was chosen for the frontend to increase reusability. The final



Revision #1

Prior DMF State Input: Posterior DMF State
a<b
DMF System State DMF System State
31‘11’4]: (Cn((a A b)), ﬁo) Edge transition 3%: (Cn((a A b)), 51)

eo: (Zo,a ¢ b,=1)

Derived-faithful tpo Context tpo Derived-faithful tpo Context tpo

Ss;yz ‘ [ =1

st ‘ ‘ =0

Postulate Satisfied?

-
o
S
=
=
o

CR1 v
CR2 v

Figure 20: Detailed results for each revision step

Coeus frontend is built from the following packages:

1. logic-ts [Hel21b] implements basic building blocks of propositional logic in TypeScript.
It contains classes to represent e.g. propositional worlds or signatures and their

(de-)serialization.

2. logic-components [Hel21a] builds on logic-ts by adding a visualization layer. Tt
defines components to display and interact with, e.g., signatures or tpos in any

modern browser with the goal of providing building blocks for future tools.

3. dmf-revision is a frontend implemented using components from logic-components

to provide a custom interface for DMF revision.

Figure 22 shows an overview of the package structure. Because of the modular ap-
proach logic-components could also be used to implement other tools than dmf-revision,
namely Alchourron ([Sau2l, SHB21]) as well as Preference Builder (a website to cus-

tomize preferences over worlds and export them as text [Hel21c]).



Server

postulate-check-server

Coeus
User > Frontend

logical-systems

\
Postulates

Figure 21: Software Architecture

5.4. Textual representation

A problem during the development of Coeus was how to represent various elements of
the system as strings. Being able to export and import DMF systems and DMF' system
states supports the goal of easy sharing. In addition, the HTTP protocol used for
Client/Server communication is text-based, so any entities that are exchanged between
the front- and the backend need to be serialized as well.

Because of that, formulas and tpos require a textual representation. Export and
import of DMF systems and DMF system states can reuse the existing logic for formulas
and tpos. For reference, a full export of Example 3 can be downloaded from the website

at http://coeus.rhazn.com.

Formulas

A subset of the TPTP ("Thousands of Problems for Theorem Provers”) syntax [Sut17]
was chosen to represent propositional formulas internally. The TPTP project provides
a library of test problems for automated theorem proving (ATP). Because the TPTP
syntax is commonly used to describe problems for ATP, a selection of parsers is available.
The TPTP syntax was also chosen for formula input to have a high chance that users

would be familiar with the language.
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. . Preference
dmf-revision alEreurr e Ty T

3

logic-components

logic-ts

Figure 22: Package structure of Coeus (in blue)

Outside of internal usage and user input, Coeus represents formulas using TeX syntax.
In the browser, the formula is rendered as an SVG image using MathJax. The backend
provides endpoints to exchange a formula in TPTP syntax with its TeX equivalent.
Using different textual representations was chosen as a compromise as it allows the
implementation to reuse libraries and work with existing standards. On the other hand,
when formulas are displayed to be read by humans, they are formatted in the familiar

style of mathematical notation.

World Preferences

In order to support a wider range of use cases, the decision was made to support not
only the serialization of tpos but also ordinal conditional functions [Spo88]. Ordinal
conditional functions are a common knowledge-representation formalism. Both ocfs, as
well as tpos, can be represented as a ranking of worlds. In this context, in contrast to
tpos, ocfs allow empty ranks. By allowing empty ranks, worlds are not only ordered
relative to each other but also assigned a quantitative value of plausibility. Figure 23
shows such a ocf on all worlds of ¥ = {a, b}. logic-components provides a component to
configure tpos as well as ordinal conditional functions based on the concept of assigning

ranks to worlds.
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2 | ab, ab
1
0| ab,ab

Figure 23: Ordinal conditional function on {ab, ab, ab,ab}

As tpos can be thought of as ocfs without empty ranks, any formalism that can
represent an ocf can also represent a tpo. Therefore, three approaches for a textual
representation of ocfs are supported and compared here.

Because logic-ts is implemented in TypeScript an intuitive representation is JSON.
Simple TypeScript types can be easily serialized and parsed using the build in Json.
stringify and JSON.parse methods. In addition, JSON is a human-readable format that
allows users to edit the generated textual representation directly.

To represent a propositional world w as JSON, logic-ts serializes an array of all pro-
positional variables that are true in w, e.g. w = abc is represented as ["a", "c"]. An ocf
can be encoded as an ordered list of ranks with the ranks themselves encoded as list of

worlds. Listing 1 shows a textual representation of Figure 23 as JSON.

1| {

2 "signature": ["a", "b"],
3 "ranks": [

4 [

5 ["a"],

6 ["b"]

7 1,

8 (1,

9 [

10 ["a", "b"],
11 []

12 :l

13 ]

14 |}

Listing 1: Ocf represented as JSON

While human-readable and easy to implement, the JSON approach is limited by size.
For total preorders, the number of worlds that have to be encoded grows exponentially

with signature size (as 2/¥!). In addition, large numbers of empty ranks (as can exist in
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ocfs) are still encoded normally.

An alternative implementation in logic-ts with lower space requirements is directly
working with binary data. Two different options are explored here. The worldlist ap-
proach is similar to the JSON representation and saves every rank as a list of worlds.
The opposite view is chosen in the ranklist approach that assigns a number to every
world and saves an ordered list of numbers for their rank.

For the worldlist approach, any world can be encoded in binary with |X| bits by
ordering the propositional variables alphabetically and assigning 1 to true variables and
0 to others, e.g. w = ab = 10. Every world in  can be assigned a natural number,
called world index, using this numbering schema.

TypeScript allows for managing binary data in 8, 16 and 32 bit increments so the
lowest possible size to encode all worlds is automatically chosen (e.g. 8 bits for any
|¥| < 8). To reduce the amount of data required for empty ranks, only ranks that
contain worlds are considered. A rank is encoded as two 32-bit numbers. The first
number contains the number of worlds in the rank n, the second the distance to the
next non-empty rank d. During parsing, a rank can be restored by interpreting the next
|X| % n bits as worlds. After restoring the rank, a number of empty ranks equal to the
distance d are created. Listing 2 shows the ocf from Figure 23 encoded as binary in the
worldlist approach. The leading 8-bit number encodes a version (in this case version 1).
Because the size of the alphabet ¥ is relevant to compute the size of worlds the second,
32-bit, number encodes |X| (in this case three). The full structure until the first rank is:

version:alphabet-size:#worlds-in-rank:distance:worldl:world2:....
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1 | 00000001
2 {00000000000000000000000000000010

4 |1 00000000000000000000000000000010
5 | 00000000000000000000000000000001
6 00000010
7 100000001

9 {00000000000000000000000000000010
10 [ 00000000000000000000000000000000
11 00000011
12 | 00000000

//
//

//
//
//
//

//
//
//
//

Version: 1

Signature size: 2

Rank size: 2
Gap size: 1
World 2
World 1

Rank size: 2
Gap size: O
World 3
World O

Listing 2: Ocf in worldlist binary

When encoding ocfs in the ranklist approach, the binary representation is an ordered
list of rank numbers assigned to the possible world at that index. The world index

corresponds to its binary number as described for the worldlist approach. For example

the index 2 holds the rank for world w = ab = 10.

Listing 3 shows the ocf from Figure 23 encoded as binary in the ranklist format with

the same leading data encoding the version and the alphabet size.

1 | 00000001
2 |00000000000000000000000000000010

4 | 00000000000000000000000000000010
5 | 00000000000000000000000000000000
6 | 00000000000000000000000000000000
7 {00000000000000000000000000000010

//
//

//
//
//
//

Version: 1

Signature size: 2

World
World
World
World

is on rank

is on rank

is on rank

w N = O

is on rank

N O O N

Listing 3: Ocf in ranklist binary

To compare how the approaches scale, Figure 24 shows the size of a tpo with a single
rank depending on the size of X in bytes. Note that this comparison does not create
empty ranks and is therefore skewed in favor of the JSON and ranklist approaches. The
jumps in size of the worldlist binary encoding at |X| = 9 and |¥| = 17 are due to the

37




107

81 :Eﬁnaéfiigikﬂmt 10714 :fﬁnagfﬁigikHSt

—e— Binary Ranklist 106 1| * Binary Ranklist
10° |
10* |
10% |
102 |

5 10 15 20 5 10 15 20
3| 2]

(b) Size of serialized tpo (log)

(a) Size of serialized tpo (linear)

Figure 24: Size comparison of a serialized with a single rank

switch to a bigger data type to encode worlds. The ranklist binary representation uses an
unsigned 32-bit integer (for a maximum rank of 4294967295). While a smaller maximum
rank would lead to a smaller absolute size, the relative scaling of the approach would
stay the same as it is related to the number of worlds.

In local testing, the JSON approach was able to encode the tpo up to |X| = 21 and
used 92274800 bytes (in worldlist binary, the same size encodes in 8388621 bytes or at
9% of the size). The wordlist binary solution was able to encode |X| = 23 at 33554445
bytes (33554437 bytes for the ranklist approach). All approaches are likely limited by
memory constrains on the test machine, but the difference in scaling is visible.

Fundamentally, all approaches are limited by scaling based on the number of possible
worlds that have to be represented. When considering total orders, 2/* possible worlds
must be either be encoded directly or a rank number assigned to each one. Both the
JSON approach and the worldlist binary approach have reduced sizes for partial orders.
Because of the rapid increase in the number of worlds, binary solutions scale better as
their representation of an individual possible world is more compact. On the other hand,
the JSON representation is human-readable and easier to implement, making it a good
choice for smaller signatures. Coeus exports tpos as JSON because they are created

from user input, ensuring the number of possible worlds is relatively small.
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5.5. Extending logical-systems

logical-systems [Sau2l] is a modular logic-library with support for a variety of different
logics. It implements a solution to the problem of verifying whether or not a belief
change satisfies a set of postulates or not by employing first-order model checking as
described in Subsection 4.2.

In order to make it easy to extend the system, postulates are loaded from a textual
representation of formulas in TPTP syntax. For the prototype, several postulates from
the literature were implemented, described in full in Appendix C. As an example,
Listing 4 shows a textual representation of ¢ agpe. Because postulates can be provided
as simple FOTPC formulas, the system will be easy to extend in the future. Additionally,

this approach allows users to test custom postulates by entering them in TPTP syntax.

fof (

’Success’,

postulate,

b [w1l @ C ( int(W1) & mod(W1,0p(E0,A)) ) => mod(Wi,A) )
).

Listing 4: (AGM*2) represented as a formula in FOTPC using TPTP syntax

A custom connector to a scala-based parser (scala-tptp-parser [Ste21]) was developed
to construct the internal representation of a formula needed in the backend. Together
with the author, the parser itself was enhanced to be available from widespread package
managers for both Scala and Java !. A set of unit tests that parse existing formulas from
the TPTP library was also added. For any parsed node from the scala-tptp-parser, the
connector creates the corresponding object in logical-systems. Different configurations
for these connections can be defined and exchanged during runtime. The postulate-
check-server uses this flexibility to provide two endpoints to check a formula, one for
first-order logic and one for propositional logic.

In summary, logical-systems provides the core functionality to work with first-order
and propositional logic formulas as well as to verify whether a belief change fulfills a

postulate or not.

https://github.com/leoprover/scala-tptp-parser/pull/1
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5.6. Postulate check server

postulate-check-server is a Java application that provides a HT'TP API for Coeus. It is
based on logical-systems and enables any frontend to use features such as checking logical
formulas for equivalence, minimizing propositional formulas using the Quine-McCluskey
algorithm [McC56] or certifying if a belief change fulfills postulates using model checking
[Sau21, SHB21].

Postulate-check-server is built with Spark 2, a microframework for creating web ap-
plications. Application logic is grouped into services that are provided to controllers
by dependency injection [Fow04]. On application start, HTTP routes are matched to
controller functions. In addition to the implementations relevant for belief change, the
app also handles general functionality like HT'TPS. For transforming input and output
from Java objects to JSON, GSON 3 is used. Figure 25 shows a high-level overview of

the architecture.

postulate-check-server
App Controllers
JSON — Postulate Formula
R Controller Controller
Maps to
HTTPS |
Internet (= > < e
CORS
Services
BeliefChange Formula
Service Service

Figure 25: postulate-check-server architecture

Listing 5 is an example for a controller implementation that returns the LateX repres-
entation of a formula in TPTP syntax. A GSON instance is provided using constructor

injection in line 4 and used to deserialize the HTTP input in line 9. Using the Spark

’https://sparkjava.com/
3https://github.com/google/gson
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framework, the function formulaToLatex is registered as a callback for HTTP requests

and provides an API for functionality in the logic-components library.

10

11

12

13

14

15

16

17

18

19

public class FormulaController {

private final Gson gson;
public FormulaController (Gson gson) {

this.gson = gson;

public Object formulaToLatex (Request request, Response response) {
FormulaToLatexInput input = gson.fromJson(request.body(),

FormulaToLatexInput.class);
Formula<PropositionalSignature <Character>> formula =
FormulaParseService.propositionalFormulaFromString(

input.formula) ;

FormulaToLatexOutput result = new FormulaToLatexOutput () ;

result.latex = formula.toLaTeX();

return result;

}

Listing 5: Excerpts from the FormulaController of postulate-check-server (src/main/java

/com/rhazn/controller/PostulateController.java)

To enable GSON to automatically serialize HT'TP responses to JSON, custom serial-

izers were implemented for objects in logcial-systems. The class InterpretationSerializer

(see Listing 6) is an example that translates a propositional interpretation into the JSON

structure described in Subsection 5.4.
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1 |public class InterpretationSerializer implements JsonSerializer<
PropositionalInterpretation<Character>> {

2 @0verride

3 public JsonElement serialize(

4 PropositionalInterpretation<Character>

propositionalIlnterpretation,

5 Type type,

6 JsonSerializationContext jsonSerializationContext

7 ) {

8 JsonArray truthyValues = new JsonArray();

9

10 for (Character variable : propositionallnterpretation.getAllTrue())

{

11 truthyValues.add(variable);

12 }

13

14 return truthyValues;

15 }

16 |}

Listing 6: Excerpts from the InterpretationSerializer of postulate-check-server (src/main

/java/com/rhazn/json/InterpretationSerializer.java)

5.7. Coeus client

A browser-based client was implemented to interact with the API provided by postulate-
web-server. It is built highly modularized and allowed for component reuse across mul-
tiple projects during the writing of this work. This chapter will give an overview of the
goals for the Coeus client, approaches to manage software complexity due to modular-

ization, and then discuss the individual modules in more detail.

FAIR principles

As described in Subsection 4.1, a goal during the implementation of Coeus was to fol-

low the FAIR principles for good research software. The complete implementation is
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available on GitHub?*, the biggest platform for collaborative software development in
the world [BHV16]. In addition, every module written solely by the author is provided
with a permissive open source license. While it is easy to find and use code from GitHub
for developers, it does not provide solutions for some goals for research software, namely
making it easy to cite and download exact software snapshots. For this purpose, the
modules are also uploaded to the repository Zenodo [EO13], providing a citeable digital
object identifier (DOI) as well as the ability to download software snapshots.

The goal of targeting as many runtime platforms as possible was achieved by making
Coeus a web-based application that can be accessed with any modern browser. This
ensures the software is easy to distribute and update as well as making it widely available.

Special attention was paid to the usage of standards to ensure interoperability and
reusability. Export of configuration is done using JSON (Subsection 5.4), a textual
representation that is human-readable and is commonly used. Modularity and inde-
pendence from any concrete frontend framework for most of the logic implementation
was a particular concern. By splitting up the implementation into multiple packages,
large parts of it could be implemented in TypeScript only or employ HTML standards

like custom elements.

NPM Modules

As described in Subsection 5.3 and shown in Figure 22, the Coeus client is split into three
packages, logic-ts (logic entities themselves) [Hel21b], logic-components [Hel21a], (web
components to manipulate and display logic entities) and dmf-revision (an implementa-
tion of postulate checking for DMF revision). A fourth package, logic-components-react,
exists to allow for easier use of the components from logic-components in React based
applications.

One option to manage dependencies in Javascript applications is npm °. npm is a
package manager that can resolve dependencies from a registry, typically the public
npm registry.

Splitting up software over multiple modules introduces a considerable overhead in
maintenance. Therefore, it was crucial to automate as much as possible. For this pur-
pose Github Actions ¢ were used to implement continuous integration and -deployment.

Originally a practice from extreme programming [Bec99], continuous integration recom-

‘https://github.com
Shttps://www.npmjs.com/
Shttps://github.com/features/actions
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mends automating software builds and ensuring changes do not introduce mistakes by
including tests. Continuous deployment is the practice of deploying software artifacts
from successful builds automatically. In the case of the npm modules discussed here,
that means uploading a new version of the module automatically whenever their version
number changes. Listing 7 shows a configuration file for Github Actions that sets up
continuous integration and -deployment for logic-ts. Line 18 executes tests defined in
the project after which the project is built. After a successful test and build, the arti-
fact is published to npm using the secret configured in the repository (line 22). Similar

automated build scripts exist in all package repositories.

1 |name: CI

3 |on:
4 push:

5 branches:

6 - master

7

8 | jobs:

9 publish:

10 runs-on: ubuntu-latest

11 steps:

12 - uses: actions/checkout@v2

13 - uses: actions/setup-node@v2

14 with:

15 node-version: 14.16.0

16 - run: npm install -g npm@7.8.0

17 - run: npm install

18 - run: npm run test:ci

19 - run: npm run build

20 - uses: JS-DevTools/npm-publish@vl
21 with:

22 token: ${{ secrets.NPM_ACCESS_TOKEN }}
23 access: public

Listing 7: Continuous Integration in logic-ts using Github Actions (/.github/workflows/

ci.yml)
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logic-ts

As the foundation for implementations of propositional logic in TypeScript, the logic-ts
package implements various logical entities.

The textual representation of logical entities that were discussed theoretically in Sub-
section 5.4 was implemented in logic-ts. Methods for the serialization into a textual
representation are provided by the classes themselves. Depending on which repres-
entation they offer, classes implement either the interface SerializeableBinary.ts or
SerializeableBinary.ts in src/serialize/interface/. Both interfaces are Client/Server—
Interfaces, as defined by Steimann und Mayer [SM05]. The implementation directly on
the class allows to call, e.g., a .toJson() method on any object that implements the
correct interface to retrieve a textual representation of the object.

To parse a text and recreate the object it represents, parser classes that implement
either a ParserFactoryBinary Or ParserFactoryJson interface exist. logic-ts implements
parsers for most entities at src/serialize/. Listing 8 shows an example of such a parser
for a propositional world. It supports parsing a world from either a list of truthy values

in JSON representation or a binary number as described in Subsection 5.4.
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23

24

25

export class PropositionalWorldParserFactory

<PropositionalWorld>

constructor (private signature: PropositionalSignature) {3}

public fromJson(json: string): PropositionalWorld {

const parsed = JSON.parse(json);

return new PropositionalWorld(this.signature, new Set(parsed));

public fromBinary(binary: ArrayBuffer): PropositionalWorld {
const view = PropositionalWorldParserFactory.

getMinimalViewForSignatureSize (this.signature.size, binary);

return PropositionalWorldParserFactory.worldFromNumber (this.

signature, view[0]);

public static worldFromNumber (signature: PropositionalSignature,
number: number): PropositionalWorld {
const assignment = [...number.toString(2).padStart(signature.size,
"0")].reduce ((previous, current, index) => {
return previous.concat(current === "1" ? [...signature][index]
(1;
Y, [

return new PropositionalWorld(signature, new Set(assignment));

}

implements ParserFactoryJson<PropositionalWorld>, ParserFactoryBinary

Listing 8: Excerpts from Propositional WorldParserFactory

(src/serialize/PropositionalWorldParserFactory.ts)

Serialization and parsing in logic-ts are extensively unit tested using jest 7. Unit tests

can be found in the src/test directory and are automatically executed on every commit

"https://jestjs.io/
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to verify its correctness. Listing 9 shows a unit test for parsing PropositionalWorld
objects from JSON.

1 |describe("parsing json", () => {

2 describe ("propositional worlds", () => {

3 const signature: PropositionalSignature = new Set(["a", "b", "c"1);

4 const worldParser = new PropositionalWorldParserFactory(signature);

5

6 test.each ([

7 [‘["a"]‘, new PropositionalWorld(signature, new Set(["a"]))],

8 [‘["a", "b"]‘, new PropositionalWorld(signature, new Set(["a", "b
"10)17,

9 [‘["c", "a", "b"]‘, new PropositionalWorld(signature, new Set(["a
", "b", "c"1))1,

10 [‘[]¢, new PropositionalWorld(signature, new Set([]))],

11 1) ("parse: %j", (input: string, expected: PropositionalWorld) => {

12 expect (worldParser.fromJson (input).assignment).toEqual (expected.
assignment) ;

13 expect (worldParser.fromJson(input) .signature).toEqual (expected.
signature) ;

14 b

15 b

16 [ 1)

Listing 9: Excerpts from a unit test (src/test/parse-json.test.ts)

Example output when running all tests suites is shown in Listing 10. As visible there,
the continuous integration server also displays what lines of the code are not covered
with tests. For future work, the test coverage metrics can be integrated into the checks

for every commit, ensuring only tested code is introduced.
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1 | PASS src/test/parse-json.test.ts

2 | PASS src/test/serialize-json.test.ts

3 | PASS src/test/serialize-binary.test.ts

4 | PASS src/test/parse-binary.test.ts

5 | mmmmmmm oo |-====--- |====---- |====m--- |====m--- |==mmmmmmm -
6 | File | % Stmts | % Branch | % Funcs | % Lines | Uncovered Line #s

T | = |-====-=- |- |- |- |==mmmmmm -
8 | A1l files | 81.2 | 59.62 | 75 | 79.82 |

9 logic | 78.1 | 56.52 | 75 | 75.53 |

10 BeliefRevisionInput.ts | 100 | 100 | 100 | 100 |

11 DMFSystem.ts | 21.74 | (O] 33.33 | 18.18 | 22-62

12 DMFSystemState.ts | 83.33 | 100 | 66.67 | 75 | 9

13 PropositionalWorld.ts | 100 | 100 | 100 | 100 |

14 WorldPreference.ts | 93.22 | 84.62 | 100 | 92.59 | 84-88

15 serialize | 88.7 | 62.07 | 100 | 88.18 |

16 BeliefRevisionInputParserFactory.ts | 100 | 100 | 100 | 100 |

17 DMFSystemParserFactory.ts | 100 | 100 | 100 | 100 |

18 DMFSystemStateParserFactory.ts | 100 | 100 | 100 | 100 |

19 PropositionalWorldParserFactory.ts | 70 | 40 | 100 | 70 | 39-43,51-55

20 WorldPreferenceParserFactory.ts | 90.14 | 73.68 | 100 | 89.39 | 18,45,60-64,111

21 util | 42.86 | 100 | o | 42.86 |

22 functions.ts | 42.86 | 100 | [ 42.86 | 7-11,21-22,27,31-38
D B B bbbt |-====-=- |- |- |- |==mmmm -
24

25 Test Suites: 1 skipped, 4 passed, 4 of 5 total

26 Tests: 1 skipped, 52 passed, 53 total

27 Snapshots: 0 total

28 Time: 4.551 s

29 | Ran all test suites.

Listing 10: Running all test suites in logic-ts

logic-components

logic-components [Hel21a] is a library of web components that provide commonly used
elements for tools working with logic. It enables users to embed signatures, propositional
worlds or total preorders (that can be changed by drag & drop), and more. Figure 26
shows an example for a total preorder as rendered by logic-components.

Recent years have seen a rapid maturing of the JavaScript ecosystem with the in-
troduction of single-page-application frameworks like Angular®, React? and Vue.js'®. A
downside of the fast rate of change is framework-churn, meaning hard to maintain pro-
jects because the underlying framework had too many breaking changes. To avoid these
problems logic-components is implemented using Custom Elements''. Custom elements

are part of the HTML standard and are widely encouraged by the industry (e.g., by Git-

8https://angular.io/
https://reactjs.org/
Onhttps://vuejs.org/
11https ://html.spec.whatwg.org/multipage/custom-elements.html
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Figure 26: Total preorder over ¥ = {a, b} from logic-components

Hub'? or Google'®). In combination with other standard APIs like the shadow dom and
HTML templates, custom elements allow developers to create reusable web components
that run natively in modern browsers. Various toolchains exist to make the development
of web components easier, here Stencil'* was used to built logic-components. In addition
to providing an easier-to-use API, Stencil also automatically generates documentation
about the properties and dependencies of all web components that can be found directly
in the repository. Most importantly, the generated web components are independent of
any framework.

While web components can be used with JavaScript only, their integration into a
framework can be challenging. Because of problems with change detection, to use logic-
components with the popular React framework, every component needs to be wrapped
into a custom React component. Consequently, this makes using logic-components with
React error-prone and forces developers to write boilerplate code. An additional compil-
ation step was implemented that automatically creates these wrapper components and

publishes them as an npm package (logic-components-react!'®) to solve these problems.

2https://github.blog/2021-05-04-how-we-use-web-components-at-github/
3https://developers.google.com/web/fundamentals/web-components/customelements
Yhttps://stenciljs.com/
Yhttps://www.npmjs.com/package/@rhazn/logic-components-react
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dmf-revision

The web application that combines logic-ts and components from logic-components is
implemented in the dmf-revision package. A large part of the needed functionality is
related to user interaction and display of the underlying data. For that reason, React
was chosen as a frontend framework instead of relying on plain TypeScript. React is a
popular library for writing user interfaces, developed by Facebook. It was chosen with
the FAIR principles in mind as their design principles!® include interoperability and
stability.

Reacts structure favors splitting the functionality into smaller parts, called compon-
ents. Building larger elements of the user interfaces is then done by combining compon-
ents using composition. This closely aligns with the well-known principle of favoring
object composition over inheritance [GHJV95] and allows reuse of components. The
export of configuration for DMF revision, shown in Figure 27, is an example of this
principle. In this screenshot, every button is a component that contains shared logic for
rendering, displaying a download dialog, and saving a file. Because the common logic is
already implemented in the component, the page that allows the user to export DMF
configuration only has to provide the content.

An example is DMFEdgeDisplay, a component that renders an edge in a DMF system.
Listing 11 shows excerpts of the code. It is a functional component that takes a list
of parameters as input and returns data that can be rendered by React. Coeus makes
extensive use of dependency injection for services. On line 2 an instance of DMFService is
provided to the component from the context. This service uses the postulate-web-server
API to transform formulas from TPTP syntax to TeX for display. During development,
the object is instantiated to localhost. For production deployments, it is exchanged
for the production URL of the API. The components manage their state using React
hooks. The useState hook returns a variable that references the current value and a
function to set a new value. Line 14 shows how this functionality is used in a second
hook, useEffect. The useEffect hook is executed every time its dependencies change
(here index or hideName) and sets a new name for the edge display. Finally, in line
18, the component returns data that is rendered by React. Every time the state of
the component changes (e.g., in the useEffect hook described previously), this data is
updated with its new value and re-rendered.

The component-based approach also naturally extends to web components. The user

interface elements that are implemented in logic-components are embedded into pages

Yhttps://reactjs.org/docs/design-principles.html

20


https://reactjs.org/docs/design-principles.html

® N O s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28

export const DMFEdgeDisplay: React.FC<DMFEdgeDisplayProps> = ({ edge,
index, hideName }: DMFEdgeDisplayProps) => {
const dmfService = useContext (DMFServiceContext);
const [formulalatex, setFormulalatex] = useState<string>("");
const [name, setName] = useState<string>("");

useEffect (() => {
(async () => {
const formulalatex = await dmfService.getFormulalatex (edge.
formula) ;

setFormulalLatex (formulalatex) ;

»HO;
}, [edge, dmfServicel);

useEffect (() => {
setName (! 'hideName ? ‘¢ : String.raw‘e_{${indexF}F\textrm{: });
}, [index, hideNamel]) ;

return (

<div>
<MathComponent
display={false}
tex={String.raw ‘${name}(${contextTpoNameByIndex (
edge .fromIndex,
)}, ${formulalatex}, ${contextTpoNameByIndex (edge.
toIndex)}) ‘}
/>
</div>

)
};

Listing 11: Excerpts from DMFEdgeDisplay, displaying an edge of a DMF system in
Coeus (src/components/dmf—revision/DMFEdgeDisplay.tsx)
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Export

EXPORT EVERYTHING

EXPORT DMF SYSTEM
EXPORT DMF SYSTEM STATE

EXPORT BELIEF CHANGE

Figure 27: Export of DMF revision configuration. Every button is a component that
includes shared implementations for opening a download dialog and saving
a file to disk. Different configuration leads the components to save different
content as well as be rendered differently.

the same way as components from dmf-revision.

In addition to functional components, functional programming is also used for small
utilities because functions without side effects are easy to reason about and test. An
example is shown in Listing 12. Here, the additional syntax needed for a well-formed

TPTP first-order formula is added to a formula.

1 |export const addTptpBoilerplate = (formula: Formula): string => {
2 return ‘fof (’formula’, axiom, ${formulal}).‘;
3 |}

Listing 12: Example utility function, adding TPTP syntax for a first-order formula to a

raw formula input. (src/util/functions.ts)

Services were implemented as an abstraction layer over the API and allow components

to call the HT'TP endpoints of postulate-web-server asynchronously. As described previ-
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ously, dependency injection using React context is used to provide a service object with
the correct API base URL to components. The services themselves also use dependency
injection. In Listing 13, line 2 shows constructor injection to get a correctly configured
instance of SyntaxCheckService. The function checkPropositional, defined on line 4, is
implemented using the JavaScript async/await API to execute non-blocking. It sends a
formula in TPTP syntax to postulate-web-server to check whether or not it is a valid,

propositional formula and then parses the response from JSON and returns it.

1 |export class SyntaxCheckService {

2 constructor (private host: string) {}

3

4 public async checkPropositional (formula: Formula): Promise<
SyntaxCheckResponse > {

5 return fetch(‘${this.host}/syntax/tptp/propositional ‘, {

6 method: "PUT",

7 headers: {

8 "Content -Type": "application/json",

9 1,

10 body: JSON.stringify ({

11 formula: formula,

12 b,

13 }) .then(response => response.json());

14 }

15 |}

Listing 13: Excerpts from SyntaxCheckService that provides functionality to check if a

TPTP formula is valid. (src/service/SyntaxCheckService.ts)

A small selection of open source projects was used to implement the frontend of Coeus
in the limited time.

Formulas and mathematical symbols are rendered with MathJax!” using React com-
ponents from mathjax-react'®. As described in Subsection 5.4, TPTP syntax is still used
for formula input but MathJax allows Coeus to display most elements in the familiar

mathematical notation.

https://www.mathjax.org/
8https://github.com/charliemcvicker/mathjax-react
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Because DMF systems can be thought of as directed graphs, D3.js'® and react-d3-
graph? are used to render them as such. The representation of a DMF system as
a directed graph allows users to quickly get an overview of how an agent will switch
between the total preorders, which is especially valuable when configuring belief revision
inputs.

Finally, Material-UI?!, a popular component library for React was used as a basis to
create the user interface.

During the implementation, the user interface was changed multiple times with feed-
back. As a prototype, in a direct extension of previous work, all information was presen-
ted on one page. This approach led to overwhelming complexity as anticipated in Sub-
section 4.4. To guide the user, the Ul was broken up into multiple steps. Figure 28
shows the horizontal stepper on top and how only information about the signature is
shown. Every individual page only displays part of the configuration but still provides
the user with their overall context in the process.

The downside of organizing the process into multiple steps was that users were now
missing context. Especially during configuration of belief revision input, common feed-
back was that the derived-faithful tpos §A\I,/[ of the DMF state ¥ as well as the DMF
system M would be helpful. An overlay system was implemented (see Figure 29) to
enable users to reference these elements without overloading the page. With this ap-
proach, only the most important information is shown. Experienced users can still

reference other elements of the configuration if needed.

5.8. Implementation of DMF revision

When a user enters a new belief change input « in Coeus the posterior DMF revision
state si  is automatically computed. In contrast, previous work relied on users entering
the posterior epistemic state by hand. A DMF revision operator for epistemic states, o,
therefore needed to be implemented.

A derived-faithful tpo <. toa DMTF system state s}, as described in Subsection 4.3,
was implemented in postulate-web-server. The Java source code can be seen in List-

ing 14.

Yhttps://d3js.org/
2Onttps://github.com/danielcaldas/react-d3-graph
2lhttps://material-ui.com/
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public TotalPreorderState getDerivedFaithfulTpo(TotalPreorderState

contextTpo,
List<Formula<PropositionalSignature <Character
>>> beliefSet) {
Propositionallogic<Character> logic = new PropositionalLogic<>();

Set<PropositionalInterpretation<Character>> beliefSetModels =
contextTpo.getLayers () .stream()
.flatMap (
layer -> layer
.stream ()
.filter(
interpretation -> beliefSet.stream()
.allMatch(formula -> logic.satisfies(
interpretation, formula)))

).collect (Collectors.toUnmodifiableSet ());

return getDerivedFaithfulTpo (contextTpo, beliefSetModels) ;

public TotalPreorderState getDerivedFaithfulTpo(TotalPreorderState

contextTpo,
Set<PropositionalInterpretation<Character>>
beliefSetModels) {
List<Set<Propositionallnterpretation<Character>>> layers = contextTpo

.getLayers () .stream () .map (
layer -> layer
.stream ()
.filter(
Predicate.not(beliefSetModels::contains))
.collect(Collectors.toUnmodifiableSet ())
).collect(Collectors.tolList ());

layers.add (0, beliefSetModels);

return new TotalPreorderState(layers, contextTpo.getSignature());

}

Listing 14: Constructing a derived-faithful tpo from a DMF system state (src/main/java

/com/rhazn/service/DMFRevisionService.java)
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With the ability to compute derived-faithful tpos to DMF system states, a DMF
revision operator according to Definition 11 can be implemented.

The belief set of the posterior DMF system state is constructed on the server by
first selecting the minimal models of the input « in <o For a minimal formula -~
so that [7] = min([a], <), initially, the full disjunctive normal form is computed
from the set of minimal models. The resulting formula is then minimized using the
Quine-McCluskey-Algorithm [McC56] and returned to the frontend.

Because the definition of the DMF system M is managed by the frontend, finding <yo.
is implemented there. As candidates for a context-switch, the frontend requests a list of
all outgoing edges from the current context tpo <y of the current DMF system state.
Their associated formulas are sent to the backend and checked for semantic equivalence
with the input a. If a semantically equivalent formula is found, the context tpo of its

associated edge is set as the next context tpo. If not, no change is made.
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Signature Deterministic DMF System State Belief Revision Input Results
Multiform System

Signature

Let £ be a propositional language over the propositional signature (non empty set of finitely many propositional
variables) Y. Lower case letters a, b, c. . . are used to denote propositional variables.

Define a signature X here.

Signature Create new
The current signature Signatu re
- You can create a new signature
7 ={ab}

Import from file

Import existing data from a .dmfrevision-file

€ SELECTFILE
(or drag & drop here)

NEXT

Figure 28: The user interface of Coeus is broken up into multiple pages using a horizontal
stepper
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Derived-faithful tpo

Figure 29: Overlays are used to enable users to view more information as needed, here
of a derived-faithful tpo <¥
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6. Evaluation & Improvements

For an evaluation of the implementation, recall the goals for Coeus, outlined in Sub-
section 4.1. The application aims to support experimental studies on DMF revision by
researchers and can also have applications for didactic purposes. It should be able to
automatically verify whether or not an iterated DMF revision satisfies a set of postulates
from literature. The configuration should be shareable and the tool easy to distribute
and install. To support future work, a set of guidelines, called the FAIR principles of
research software, should be followed. They promote the usage of good software devel-
opment practices and adherence to established standards.

The anticipated challenges for successful implementation were discussed in Subsec-
tion 5.1. They could largely be divided into technical challenges, decisions about stand-
ards for textual representation, and user interface questions. A similar structure will
be followed in this chapter by first discussing implementation choices and improvements

before moving on to usability feedback.

Implementation choices

The biggest decision regarding software architecture was building Coeus as a browser-
based Client/Server application. This was mainly done to support the easy distribution
of the tool. During the writing of this work, the architecture already proved to be
helpful when gathering feedback. It also provided a quick way to distribute updates
when making frequent changes. A downside of the architecture is the added overhead of
having to implement a server to communicate with the existing logic library. While this
increased the complexity of the project, the impact was limited because communication
with the text-based HTTP protocol could reuse the textual representations already
implemented for import and export functionality.

On the client-side, relying on TypeScript as a type-safe alternative to JavaScript paid
of by catching many bugs already at compile time. Moreover, the ability of modern
IDEs to provide type hints for TypeScript projects was of particular help during the
development of a complex application. Similarly, the choice of StencilJS as a toolchain to
write web components provided good documentation and reduced the complexity of the
web components API. While StencilJS enabled an automated generation of components
to be used with the React framework, in hindsight, the incompatibilities were severe
enough to introduce risk to the implementation. Building web components as a standard

compliant basis for a web application is promising but still has interoperability issues.
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The server required Java to extend the existing implementation. The logic library was
useful and flexible. Because the backend is written in Java, it was also possible to use
other JVM-based projects like the scala-tptp-parser [Ste21] that sped up development.
Because back- and frontend are implemented in different technology stacks, the software
is quite complex. Parts of it (e.g., parsing the textual representation) needed to be
implemented twice. This could have been avoided by either using a language like NodeJS
in the backend or implementing the client as a Java program.

Overall the implementation choices for Coeus were reasonable and provided a solid
basis for a modularized and reusable implementation. Less complex choices would have

been possible by sacrificing some of the desirable properties from the FAIR principles.

Software quality

Outlining the desirable properties of the implementation at the start was a helpful
guideline during the work. Developing research software requires additional considera-
tions to industry software, mainly the ability to find and cite specific versions of software
artifacts. Hosting the code on GitHub and distributing JavaScript modules with npm
meant that the implementation was easy to find and share. Using Zenodo to make
concrete versions citeable was easy to set up and worked well.

A potential problem with presenting the software in so many different ways (GitHub
for collaborative work on source code, npm to use the compiled JavaScript and Zenodo to
cite) was the amount of work that would need to be done for every release. Implementing
automated build and release scripts was therefore crucial. GitHub actions were easy to
implement and provided the necessary features. Coupled with the well-designed auto-
import of repositories into Zenodo, the complexity was manageable.

In regards to good software development practices and automated builds, automated
testing plays an important role. In that regard, mainly automated unit tests were
implemented. These unit tests allowed for fast iterations during the development of tex-
tual representations in logic-ts and parsing of TPTP formulas in postulate-web-server.
Automatically verifying the correctness of the tested code when making changes caught
multiple bugs. For other parts of Coeus, especially those that provide a user interface
like dmf-revision, end-to-end testing (testing the complete functionality) would have
been appropriate. Due to the complexity of writing end-to-end tests as well as frequent
changes in application flow during development, no such tests have been implemen-
ted. As a result, some parts of the application do not meet the goal of being tested

automatically and should be improved as soon as possible.
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The FAIR principles include interoperability and relying on existing standards. For
the textual representation, adhering to standards paid off. Especially using TPTP syn-
tax consistently to work with formulas had multiple benefits. Most importantly, because
the syntax is used in automated theorem proving, a variety of parsers already exist. The
scala-tptp-parser could therefore be used instead of implementing a parser. Moreover,
TPTP allowed for an implementation of propositional and first-order logic formulas with
only minor changes. Using JSON to represent tpos instead of a custom binary represent-
ation was a second existing standard that was used. During the development of Coeus,
it was helpful to be able to read the textual representation of a tpo (e.g., in an HTTP
request). The fact that JSON is easy to manipulate in multiple programming languages
was also important because parsing the representation needed to be implemented twice
(once in Java and once in TypeScript).

Good modularization was the main benefit of following good software architecture.
During the creation of this work, it was possible to create multiple other tools (Alchour-
ron [SH21, SHB21]| as well as Preference Builder [Hel21c]) because the generic modules
could be reused. In addition to allowing the rapid implementation of these tools, this
also meant that future improvements and bug fixes were available to all applications

using the modules.

Model-checking approach

Verification of postulates for belief change was done by employing model-checking. This
provided a list of benefits: Model-checking is conceptually easy to understand, which
made the extension of an existing approach possible and will make Coeus a better
didactic tool. The implementation is fully automated and easy to extend with new
postulates, an important quality for research software. With future work, it will be
possible to provide counter-examples for postulates that are not satisfied.

Despite these benefits, the model-checking approach also has drawbacks, most import-
antly the limited scalability with input size. Specifically, additional work (see Subsec-
tion 6.1) was needed to allow the initial implementation to work well with a signature of
size three. Very likely, the current prototypical functionality of evaluating quantified for-
mulas for all elements of the universe can be improved further, but that was considered
outside the scope of this work. Mitigating the performance limitations of model checking
is the fact that belief revisions are configured by hand. Because tpos as a representation
of agent state also expand quickly with signature size, belief revisions created by users

will be relatively small.
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It would be interesting to extend the approach from verifying individual belief re-
visions to verifying postulates for a complete operator. For that purpose, the current
implementation would need to be extended, possibly moving away from model-checking
to automated theorem proving. Again this was considered to be out of scope for this

prototypical implementation.

6.1. Performance improvements

A summary of the work done in the scope of this thesis is included in the paper by Kai
Sauerwald and the author [SH21]. This chapter presents an extended report and more
details on the completed performance improvements.

Model-checking is an inherently complex problem. While a change of the core al-
gorithms was out of scope for this work, a survey of performance problems was taken
and major problems addressed.

All performance measurements were taken with the docker build of postulate-web-
server (as described in Section B) running with resources of 4 CPUs and 8GB of ram
on a MacBook Pro (16-inch, 2019). The target workload was the /postulateCheck route
that checks whether a belief change satisfies any of the preconfigured postulates. All
measurements were run four times and averaged. The input belief change always con-
sisted of the formula a, an initial tpo with all worlds considered equal, and a posterior
tpo with all a-worlds in the lowest rank to create the maximum amount of computation
needed. The input for the signature of size three is shown in Listing 15, smaller signa-
tures followed the same structure. While the absolute numbers depend on the system,

overall trends could be identified.

1|1 {

2 "formula": "fof(’formula’, axiom, a).",

3 "signature": ["a","b","c"],

4 "beforeTPO": {"signature":["a","b","c"],"ranks":[[["a","b","c"],["D
“,tce"], ["a","c"], ["c"], ["a"," "], ["b"],["a"],[1]1]},

5 "afterTPO": {"signature":["a","b","c"],"ranks":[[["a","b","c"],["a
","e"],["a","p"],["a"]],[["b","c"],["c"],["b"], (1112

6 [}

Listing 15: Example belief change input
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Figure 30: Scaling of response time with signature size (log)

Initially, performance scaling of the main stages for the algorithm was measured.
Postulate-check-server performs the following main functions to handle one HTTP re-

quest:

1. Parse Input: Parse the request body JSON and build a belief change structure

from
2. Build Structure: Build the structure Ac (see Subsection 4.2)

3. Check postulates: For all postulates, certify if they satisfy the input belief change

or not

Measurements were taken in nanoseconds using the Java Instant.now() and Duration
.between() APIs. Figure 30 shows the results for signature sizes from one to three
elements, plotted in log scale. From the results, it is clear that parsing the request as
well as building the initial structure show relatively little growth. The most important
target for optimization would be the verification of postulates.

During the performance improvements, three main changes were applied:

1. Using GraalVM %2 instead of OpenJDK to run postulate-check-server

2nttps://www.graalvm.org/
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Change Average time Speedup (Initial Time / New Time)

Initial 12.58 1
GraalVM 15.3s 0.82
Parallel Postulates 7.1s 1.76
Parallel Quantifiers 3.9s 3.21

Table 1: Response time changes

2. Making sure postulates are evaluated in parallel

3. Running evaluation of quantified formulas in parallel

The results, as well as the speedup factor to the initial state, are shown in Table 1. A
request with a belief change over a signature of size three took 12.5 seconds on average
initially and could be reduced to 3.9 seconds by the end.

GraalVM is an alternate runtime for, besides others, Java applications. One use case is
as a drop-in replacement to improve performance by employing additional optimizations
as described by Stadler et al. [SWM14]. Performance improvements with GraalVM are
well documented by industry (such as Twitter?® or Facebook?*) and the set up promises
to be relatively easy.

At the time of writing, GraalVM was available for Java 8 and Java 11 with an ex-
perimental version for Java 16. Because logical-systems (and by extension postulate-
web-server) requires Java 15, only the experimental GraalVM version for Java 16 could
be tried. GraalVM provides Docker images to run applications but only provides those
for Java 8 and Java 11, the experimental GraalVM version for Java 16 was not yet
available. To test GraalVM, therefore the experimental GraalVM JDK for Java 16 was
downloaded and used to build postulate-web-server. The local Dockerfile was changed to
be identical to the Docker image that builds the GraalVM image for Java 11, replacing
only the JAVA_VERSION argument with javaie.

Contrary to expectations, using GraalVM to run postulate-check-server decreased
performance as shown in Table 1. Because this result was unexpected, the performance
measurements with GraalVM were repeated multiple times with similar outcomes. Re-
verting the changes to the Dockerfile and just running the JAR, built with the GraalVM
compiler and using the OpenJDK VM, also showed degraded performance. A pos-

sible explanation would be a mistake with either the GraalVM compiler or creating the

2https://www.youtube. com/watch?v=pRENDkIZBOA
2nttps://medium. com/graalvm/graalvm-at-facebook-af09338ac519
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GraalVM Java 16 Docker image. It also seems plausible that the experimental nature
of the GraalVM for Java 16 could be the reason for the missing performance gains. The
test should be repeated once it reaches a stable version. Any GraalVM related change
was reverted before continuing.

For the following optimizations, special attention was paid to increasing the amount of
parallelism. During initial performance measurements, every individual postulate check
was timed. Most time was spend checking (CR5) and (CR6) with about six seconds each
(see Figure 31. Even though the postulate check was implemented using parallelStream
() on a HashMap of postulates, (CR5) would consistently be checked only after (CR6) was
completed.

Because splitting work over multiple threads and rejoining it at the end carries an
overhead, the Java Stream implementation does not necessarily split tasks into individual
elements. Java provides so-called spliterators to decide how to split a parallel workflow.
Array-based spliterators split elements evenly until a minimum size is reached. Because
the internal implementation of HashMap is always initialized with 16 elements (and new
elements are placed depending on their hash), a HashMap with few elements is a sparse
array that might have an unbalanced distribution of elements. Consequently, multiple
expensive operations might end up in the same split and be distributed to the same
thread. If the processing costs for an individual element can be high, the HashMap can
be copied in an array with a known size (like an ArrayList) during a preprocessing step.
Doing so enables the spliterator to create balanced splits. Implementation of such a
preprocessing step allowed all postulates to be processed in parallel, nearly halving the
response time of postulate-web-server from 12.5 seconds to 7.1s as seen in Table 1.

In a final optimization, the evaluation of formulas in logical-systems was considered.
The reason for the certification of (CR5) and (CR6) scaling worse than other postulates
was that they are the only postulates that include three all quantifiers. In logical-
systems, quantifiers are implemented using the al1Match() and anyMatch() functions on all
elements of the universe of an interpretation. This work could also be parallelized using
parallelStream(). The time needed to check individual postulates is shown in Figure 31.
With improved formula evaluation in logical-systems, it was possible to improve the
processing time of postulates with multiple quantifiers massively. In combination with
the improvements to the parallel evaluation of postulates, this led to a response time
decrease from initially 12.5 seconds to finally 3.9 seconds (Table 1) for a belief change
over a signature with three elements.

The performance improvements done focussed on improving the concrete implement-
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Figure 31: Individual postulates, |X| = 3

ation of the model-checking approach. Because Coeus is designed as a tool that requires
users to create belief change inputs by hand, it can be reasonably assumed that signature
sizes will be small. While response times for that use case are satisfactory, the approach
inherently scales poorly with signature size. Future work should focus on improving the

actual core algorithm to enable logical-systems to handle larger signature sizes.

Usability

As previously identified, the amount of information that has to be entered for DMF re-
vision created a usability challenge. In a first iteration, Coeus naively extended previous
work done with WHIWAP [SH19] and presented all data on a single page. During test-
ing, this quickly felt hard to understand, and the input was moved into multiple parts
and guided by a horizontal stepper. Showing only parts of the configuration makes it
harder for users to get an overview of input but allows for more focus on the currently im-
portant information. While the tool is still complex, splitting the interface up improved
the user experience significantly.

The advisor, as well as members of the chair of knowledge-based systems, were asked
to review earlier versions of the implementation to gather feedback from researchers.
Approaching potential users proved invaluable and led to many changes, improving

usability and information display.
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Configuring a belief revision operator based on human input imposes limitations on
its complexity. In particular, tpos grow with || (and therefore signature size). Because
users have to create tpos as part of the configuration, an operator over a large signature
or many tpos is hard to define. For the implementation of Coeus, this tradeoff was
considered acceptable (especially because the model checking approach is also limited
by performance). In the context of didactic and small experiments, the visibility of
tpos can even be considered a strength. Still, the manual input presents a limitation
of the software. Future work could extend it to a more programmatic configuration of

operators.
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7. Conclusion

Summary

In summary, this work presented an approach to iterated revision based on deterministic,
multiform systems as well as an implementation.

Section 1 and Section 2 introduced necessary notation as well as prior work. Seminal
work in belief revision like the AGM postulates [AGMS85] and the epistemic state frame-
work [DP97] was presented. Prior work concludes with more recent work on uniform
revision [ABO1, Ara20].

Extending uniform revision by deterministically switching between total preorders is
the core concept of deterministic multiform revision. As a theoretical foundation for the
following implementation, Section 3 defined what a deterministic multiform system is
and how it is applied to an extended agent state. Iterated belief revision in the DMF
framework was introduced.

A web application for experimental studies of DMF revision, called Coeus, was im-
plemented as part of this work. A more theoretical introduction to research software
and the implemented algorithms was presented in Section 4. Implementation and ar-
chitecture decisions were then shown in Section 5, followed by a more detailed overview
of the individual modules of the software. Examples were highlighted in source code or
figures to illustrate the functionality of the implementation. Challenges such as textual
representations were pointed out, and solutions were discussed.

Finally, Section 6 provided a critical evaluation of the tradeoffs made during imple-
mentation and presented improvements to mitigate performance problems. Based on the
initial goals and challenges, the section discussed decisions made and how they worked
out during development. Limitations of the implementation were identified, and possible

future extensions were presented.

Outlook

The introduction of DMF revision presents an opportunity to combine approaches from
research in finite state machines and iterated belief revision. Supported by experiments
using Coeus, researchers will be able to explore the properties of DMF revision operators.

Building on the model-checking approach to the verification of postulates, it will be
a future challenge to extend the automated certification to more than a single belief

change. Widening the input to whole operators will provide insights but also require
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extending the underlying implementation.
Finally, the web components for building new applications for belief revision that were

created during the course of this work will be extended and maintained as open-source.
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A. Provided Files

File location Note

3230880_philip_heltweg.pdf Master Thesis PDF

master-thesis/ Master Thesis LateX source files

software/coeus/dmf-revision/ Frontend of Coeus as described in Subsec-
tion 5.7

software/coeus /logic-ts/ Logic library for TypeScript as described in
Section 5.7

software/coeus/logic-components/ Web components for browser-based fron-

tends as described in Section 5.7, [Hel21a]
software/coeus/logic-components-react/ React bindings for logic-components as de-

scribed in Section 5.7
software/coeus/postulate-check-server/  Java API for logical-systems and DMF revi-

sion implementation as described in Subsec-

tion 5.6

software/logical-systems-parser/ Parser for formulas from TPTP syntax into
logical-system objects as described in Sub-
section 5.5

software/whiwap2/ Extension of WHIWAP created from logic-
components as described in [Sau21]

software/preference-builder Tool created from logic-components to build

preference-relations over worlds as described
in Subsection 5.3

Table 2: Provided software

B. Setup and Deployment

Backend: postulate-check-server

postulate-check-server requires at least Java 15. If possible, dependencies are managed
using Apache Maven 2°. Therefore, the project needs to be set up as a Maven project.
mvn install can be executed to download dependencies.

Some private dependencies are not available in a maven repository. Because of that,

the project has additional dependencies on the following modules locally:

2https://maven.apache.org/
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1. enumerative-combinatorics
2. logical systems

3. alchourron

4. alchourron-postulates

Because not all packages are available publicly, a prebuilt JAR with dependencies is
checked in at /build/postulate-check-server.jar to make running the project more ac-
cessible.

Deployment of both the back- and frontend is consistent as both are ultimately built
as a docker image. The Dockerfile in the project root creates an image using OpenJDK
26 and expects a runnable JAR of the project at /build/postulate-check-server.jar. HT-
TPS can be enabled by providing both a certificate as a Java KeyStore file as well as
its password using the environment variables KEYSTORE_LOCATION and KEYSTORE_PASSWORD
respectively. If no certificate is available, the project runs without HTTPS.

In summary, to build and run postulate-check-server with HT'TPS enabled the follow-

ing steps are needed:
1. build a JAR with dependencies at /build/postulate-check-server.jar
2. place a certificate.jks in /build
3. run docker-compose build . --tag "<tag>"

. I'ull docker run -d -p <external_port>: -e _ =/usr/a certificate
4 dock d -p 1p 4567 KEYSTORE_LOCATION=/ /app/ ifi
.jks -e KEYSTORE_PASSWORD=’<password>’ <tag>

Frontend: dmf-revision

The Coeus frontend is an npm project and requires node version 14+ and npm 7+.
Because all dependencies are managed by npm, all that is needed to install them is to run
npm install. A local development server can be started by calling npm run start. To build
a production application bundle, the command npm run build --prod is available. To
configure where the API of a postulate-check-server instance is running an environment
variable REACT_APP_API_URL can be set or provided in an .env file in the project root.

Because Coeus follows the continuous integration guidelines outlined in Section 5.7 an up

26https://openjdk.java.net/
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to date script that creates a production artifact is always available in .github/workflows
/ci.yaml.

A webserver serving the frontend must rewrite any requests to non-existing files to
index.html because it is a single-page application written in React. As a result, the
project can be packaged as a docker image that contains a correctly configured Nginx,
similar to postulate-check-server. Before creating a docker image, the location of the
postulate-check-server API needs to be configured in the Dockerfile in the project root.
To enable HTTPS, the files /infrastructure/ssl/webserver.key and /infrastructure/ssl/
webserver.pem can be added to the project root and the Dockerfile.

To build and run the docker image execute the following:

1. docker build . --tag=<tag>

2. docker run -d -p <external_port>:443 <tag>

C. Implemented postulates

AGM Postulates Success and Vacuity

Postulates (AGM=#2) and (AGM=x4) [AGMS5].

fof (’Success’,postulate, ! [W1] : ( ( int(W1l) & mod(Wl,op(E0,A)) ) =>
mod (W1,A) ) ).
fof (’Vacuity’,postulate, ! [W1] : ( ( int(W1l) & mod(W1,E0) & mod(W1l,A)

) => mod (Wi,op(E0,A)) ) ).

Listing 16: Success and Vacuity postulate in FOTTC using TPTP syntax

PR

From [BMO06] as well as [JT07] as independence postulate.

(PR) For w; € [of and wy € [a], if wy <g ws then wy <guq w2
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10

11

12

1 |fof (’PR’, postulate,

2 vofwe,w2] o (
3 (
4 int (W1)
5 & int (W2)
6 & mod (W1, A)
7 & 7 mod (W2, A)
8 & lesseq(Wl, W2, EO)
9 )
10 =>
11 (
12 strictless(Wl, W2, op(EO, A))
13 ) ) ).
Listing 17: PR postulate in FOTY® using TPTP syntax
R

Recalcitrance postulate [Boo02, NPP03].

(R) For w; € [a] and wy € [-a], w1 <wsa wo

fof (’R’, postulate,
Po[wi,w2] @ (
(
int (W1)
& int (W2)
& mod (W1, A)
& - mod (W2, A)
)
=>
(
strictless (W1, W2, op(EO0, A))
) ) ).

Listing 18: R postulate in FOTP® using TPTP syntax

UR

UR postulate [BMO06].

(UR) For wy € [of and wy € [-a], either wy <guo w2 OF Wy <guq Wi
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1 |[fof (PUR’, postulate,

2 to[wl,w2] ¢ (

3 (

4 int (W1)

5 & int (W2)

6 & mod (W1, A)

7 & ~ mod (W2, A)

8 )

9 =>

10 (

11 strictless(Wl, W2, op(EO, A))
12 | strictless (W2, W1, op(EO, A))
13 ) ) ).

Listing 19: UR postulate in FO™C using TPTP syntax

Darwiche and Pearl

Darwiche and Pearl postulates (CR1) - (CR6) [DP97] are shown in Listing 20.
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34
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36
37
38

fof (’CR1’, postulate,
bofwl, w2l o+ (
(int (W1) & int(W2) & mod(W1l, A) & mod(W2, A))
=>
(lesseq(Wl, W2, EO) <=> lesseq(Wl, W2, op(EO0, A))) ) ).
fof (’CR2’, postulate,
bofwl, w2l ¢ (
(int (W1) & int(W2) & “mod (W1, A) & ~“mod(W2, A4))
=>
(lesseq(Wl, W2, EO) <=> lesseq(Wl, W2, op(EO0, A))) ) ).
fof (’CR3°’, postulate,
Po[wi,w2] : (
(int(W1) & int(W2) & mod (W1, A) & “mod(W2, A))
=>

(strictless(Wl, W2, EO) => strictless(Wl, W2, op(EO0, A))) ) ).

fof (’CR4°’, postulate,
Vo[wi,w2] @ (
(int (W1) & int(W2) & mod(Wl, A) & “mod (W2, A))
=>
(lesseq(Wl, W2, EO) => lesseq(Wl, W2, op(EO, A))) ) ).
fof (’CR5°’, postulate,
bo[wWi,w2,Ww3] : (

(int(W1) & int(W2) & int(W3) & mod(Wi, A) & mod(W3, A) & ~

W2, A))
=>
(

(strictless (W3, W1, EO) & lesseq(W2, W1, EO0))

=>

lesseq(W2, Wi, op(EO, A))
) ) ).

fof (’CR6°’, postulate,
Po[wWi,w2,Ww3] : (

(int(W1) & int(W2) & int(W3) & mod(W1i, A) & mod(W3, A) & ~

w2, A))
=>
(

(strictless (W3, Wi, EO) & strictless (W2, Wi, EO0))

=>

strictless (W2, W1, op(EO0, A))
) ) ).

mod (

mod (

Listing 20: Postulates from [DP97] in FOTFC using TPTP syntax
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