
Certification of Iterated Belief Changes via Model Checking and its Implementation

Kai Sauerwald , Philip Heltweg , Christoph Beierle
FernUniversität in Hagen, 58084 Hagen, Germany

{kai.sauerwald,christoph.beierle}@fernuni-hagen.de, pheltweg@gmail.com

Abstract

Iterated belief change investigates principles for changes on
epistemic states and their representational groundings. A com-
mon realisation of epistemic states are total preorders over
possible worlds. In this paper, we consider the problem of
certifying whether an operator over total preorders satisfies a
given postulate. We introduce the first-order fragment FOTPC

for expressing belief change postulates and present a way
to encode information on changes into an FOTPC-structure.
As a result, the question of whether a belief change fulfils
a postulate becomes a model checking problem. We present
Alchourron, an implementation of our approach, consisting of
an extensive Java library, and also of a web interface, which
suits didactic purposes and experimental studies.

1 Introduction
A fundamental problem for intelligent agents is adapting their
world-view to potentially new and conflicting information.
Iterated belief change discusses properties of operators that
model transition of currently held beliefs under newly re-
ceived information. The field has a large body of literature
with differentiated results for a variety of different types of
operations, e.g., revision (Darwiche and Pearl 1997; Booth,
Meyer, and Wong 2006), contraction (Hild and Spohn 2008;
Konieczny and Pino Pérez 2017; Sauerwald, Kern-Isberner,
and Beierle 2020), expansion, the area of non-prioritized
change (Konieczny and Pino Pérez 2008; Booth et al. 2014;
Schwind and Konieczny 2020) and many more (Schwind,
Konieczny, and Marquis 2018).

The research on (iterated) belief change is focussed on
propositional logic (but not limited to). Often, total preorders
over interpretations (Darwiche and Pearl 1997; Konieczny
and Pino Pérez 2008; Booth et al. 2014; Schwind, Konieczny,
and Marquis 2018; Sauerwald, Kern-Isberner, and Beierle
2020; Schwind and Konieczny 2020; Konieczny and Pino
Pérez 2017; Schwind and Konieczny 2020) or refinements
thereof (Hild and Spohn 2008; Booth, Meyer, and Wong
2006) are considered as a representation formalism for epis-
temic states.

A common aspect of many approaches in the area of iter-
ated belief change is that the type of an operator class is given
by syntactic postulates, constraining how to change, and that
representation theorems show, which semantic postulates ex-
actly reconstruct that class of operations in the realm of total

preorders. The typical structure of postulates, regardless of
whether there are syntactic or semantic postulates; is that they
focus on a single (but arbitrary) epistemic state and constrain
the result of subsequent changes on that state. When total
preorders are considered as epistemic states, then very of-
ten, the so-called faithfulness condition and a representation
theorem connects the syntactic viewpoint with the semantic
perspective, e.g. (Darwiche and Pearl 1997).

Given the large variety of different postulates and types of
operations, it is tedious and cumbersome to check manually
whether a given specific change satisfies a certain postulate,
or to decide whether the change falls into a certain category
of type of operation.

This leads to the general problem of checking whether a
belief change operator or a singular change satisfies a given
syntactic or semantic postulate, which we call the certifica-
tion problem. The certification problem got not much at-
tention, notable exceptions are results about the complex-
ity for specific operations (Nebel 1998; Liberatore 1997;
Schwind et al. 2020) and results about inexpressibility (Turán
and Yaggie 2015). Furthermore, there seems to be no imple-
mentation for the certification problem for the area of iterated
belief change.

In this paper, we propose an approach to grasp the certi-
fication problem for the case where total preorders are used
as epistemic states and provide an implementation. The ap-
proach consists of defining the first-order fragment FOTPC,
which is meant as a language for semantic postulates. To
focus on semantic postulates seems to be only a minor re-
striction, as, given the many representation theorems, many
syntactic postulates are known to be expressible by semantic
postulates in the total preorder realm. Second, we describe
how an FOTPC-structure can be constructed for a belief
change operator and for a singular belief change, respectively.
The certification problem then becomes a first-order model-
checking problem. Third, we present an implementation of
the approach, which is publically available on the web.

2 Belief Change on Epistemic States
Let L be a propositional language over a finite signature
of propositional variables Σ, and Ω its corresponding set
of interpretations. Following the framework of Darwiche
and Pearl (Darwiche and Pearl 1997), we deal with belief
changes over epistemic states and propositions. An epistemic



Predicate Intended meaning Exemplary appearance

Mod(w, x) w is a model of x ω ∈ Mod(Ψ), ω ∈ Mod(α)
LessEQ(w1, w2, e) w1 6 w2 in e ω1 6Ψ ω2

Int(w) w is an interpretation ω ∈ Ω
ES(e) e is an epistemic state Ψ ∈ E
Form(a) a is a formula α ∈ L
Function Intended meaning Exemplary appearance

op(e0, a) op(e0, a) is a result of changing e0 by a Ψ ∗ α = Ψ′

or(a, b) propositional disjunction Bel(Ψ ◦ (α ∨ β)) = . . .
not(a) propositional negation ¬α /∈ Bel(Ψ ◦ α)

Figure 1: Allowed predicates and functions symbols in FOTPC, their intended meaning and how they are typically formulated in belief change
literature.

state is an abstract entity from a set E , where each Ψ ∈ E
is equipped with a deductively closed set Bel(Ψ). A belief
change operator is a function ◦ : E × L → E . In this paper,
we only consider operators satisfying the following syntax-
independence condition for each Ψ ∈ E and α, β ∈ L:

(sAGM5es*) if α ≡ β, then Ψ ◦ α = Ψ ◦ β
Here (sAGM5es*) is a stronger version of the extension-
ality postulate from the revision approach by Alchourrón,
Gärdenfors and Makinson (1985) (AGM).

The framework by Darwiche and Pearl is different from
the classical setup for belief revision theory by Alchourrón,
Gärdenfors and Makinson (1985), where deductively closed
sets (called belief sets) are used as states (Fermé and Hansson
2011). However, the richer structure of epistemic states is
necessary to include the information required to capture the
change strategy of iterative belief change (Darwiche and Pearl
1997).

There are many possible instantiations of E ; however, we
will stick here to the very common one by total preorders.
More precisely, we consider total preorders over Ω that fulfil
the so-called faithfulness condition (Katsuno and Mendelzon
1992; Darwiche and Pearl 1997), stating that the minimal
elements of each total preorder 6= Ψ ∈ E are exactly the
models of Bel(Ψ), i.e., Mod(Bel(Ψ)) = min(Ω,6). Thus,
in the scope of this paper, each total preorder 6∈ E is as-
sumed to entirely describe an epistemic state.

3 Problem Statement
Postulates are central objects in the area of (iterative) belief
change and are grouped together to define classes of belief
change operators in a descriptive way. The problem we ad-
dress is to check whether a given operator satisfies a postulate,
i.e., belongs to a class of change operators specified by postu-
lates. We call this particular problem the certification problem
(which could be considered as a generalisation of the revision
problem (Nebel 1998)):

CERTIFICATION-PROBLEM
Given: A belief change operator ◦ and a postulate P
Question: Does ◦ satisfy the postulate P ?

Clearly, information about a whole belief change operator
is available or even finitely representable only in few ap-

plication scenarios. This gives rise to several sub-problems
depending on how much information of the particular opera-
tor is known. Apart from the full operator ◦, we consider the
certification of the following cases:
• A singular belief change from Ψ to Ψ′ by α,

i.e.: Does Ψ ◦ α = Ψ′ hold?
• A sequence of belief changes Ψ1◦α1 = Ψ2, and Ψ2◦α2 =

Ψ3, and . . .
• All singular belief changes on a state Ψ, i.e. the set
{(Ψ1, α,Ψ2) ∈ ◦ | Ψ = Ψ1}
In the next section we present a model-checking based

formalisation of the CERTIFICATION-PROBLEM.

4 The Approach
In belief change, postulates are usually described by com-
mon mathematical language, which is close to (first-order)
predicate logic. In the following, we use the toolset of first-
order logic to formalise the CERTIFICATION-PROBLEM as a
first-order model-checking problem.

Language for Postulates As an initial study, we considered
several postulates from literature on iterated belief change,
e.g. (Darwiche and Pearl 1997; Booth and Meyer 2006;
Jin and Thielscher 2007; Booth 2002; Nayak, Pagnucco, and
Peppas 2003), and selected the most common predicates
and functions used. We compiled them into a fragment of
first-order logic with equality over a fixed set of predicates
and function symbols1, denoted by FOTPC (Total Preorder
Change), with the intention to describe changes over total
preorders. Figure 1 summarises the permitted symbols and
describes only the minimal required set.

Several common predicates and functions used in postu-
lates are expressible by the means of FOTPC by employing
this minimal set, e.g. logical entailment, semantic equality,
the strict part of a total preorder, checking whether a for-
mula has no model, etc. For a specific example, consider the
following:
LogImpl(x, y):=∀w.Int(w)→ (Mod(w, x)→Mod(w, y))

1Note that we could also use a fragment of many-sorted first-
order logic. However, some predicates are ”overloaded” in respect
to sorts.



Universe UAC = Ω ∪ {Ψ0,Ψ1} ∪ P(Ω)

Predicates
ModAC = {(ω, x) | x ∈ P(Ω) ∪ {Ψ0,Ψ1}, ω ∈ Mod(x)}}
IntAC = Ω
ESAC = {Ψ0,Ψ1}

FormAC = P(Ω)
LessEQAC = {(ω1, ω2,Ψi) | ω1 6Ψi ω2}
Functions

orAC = λα1, α2. α1 ∪ α2 eAC
0 = Ψ0

notAC = λα1.Ω \ α1 aAC = Mod(α)
opAC = ({(Ψ, β,Ψ) | β ∈ P(Ω),Ψ ∈ {Ψ0,Ψ1}} \ {(Ψ0, α,Ψ0}) ∪ {(Ψ0, α,Ψ1)}

Figure 2: Structure AC , encoding a singular change C = (Ψ0, α,Ψ1)

where LogImpl(x, y) describes that x logically implies y.
For illustration, we consider some aspects about belief

change postulates. First, belief change postulates are typically
formulated with a locality aspect; every postulate focusses an
initial state and a change formula α, describing a condition for
this change. As prominent examples, the following postulates
are an excerpt of the AGM revision postulates (Alchourrón,
Gärdenfors, and Makinson 1985):

(AGM2*) α ∈ Bel(Ψ ◦ α)

(AGM7*) Bel(Ψ ◦ (α ∧ β)) ⊆ Cn(Bel(Ψ ◦ α)∪{β})

In FOTPC, we address this by reserving e0 and a as special
terms, where e0 denotes the initial state and a denotes the
formula representing the new information.

Postulates for (iterated) belief change typically come in
two fashions: Semantic postulates describe changes in a se-
mantic domain, such as faithful total preorders. For example,
consider the following postulate:

(CR1) if ω1, ω2∈Mod(α), then ω16Ψω2⇔ω16Ψ◦αω2

This could be expressed in FOTPC by the following formula
ϕ(CR1):

ϕ(CR1) =∀w1, w2.

(Int(w1) ∧ Int(w2) ∧ ES(e0) ∧ Form(a))

→ (LessEQ(w1, w2, e0)

↔ LessEQ(w1, w2, op(e0, a)))

(1)

On the other hand, syntactic postulates describe changes
of Bel(Ψ). Aside of the AGM revision postulates, promi-
nent examples are the Darwiche-Pearl postulates for revision
(Darwiche and Pearl 1997) such as:

(DP1) if β |= α, then Bel(Ψ ◦ α ◦ β) = Bel(Ψ ◦ β)

Several representation results in the literature show how syn-
tactic and semantic postulates are interrelated. For instance,
it is well-known that, given ◦ is an AGM revision operator,
(CR1) holds if and only if (DP1) holds (Darwiche and Pearl
1997). Moreover, the semantic and syntactic domains are of
course related, which allows us to describe many predicates
used in the syntactic realm by semantic means. For example,

a statement like Bel(Ψ ◦ α ◦ β) = Bel(Ψ ◦ β) is expressible
in FOTPC by employing the following formula:

Bel(a, e) := (Form(a) ∧ ES(e))

→ (∀x.Mod(x, a)↔Mod(x, e))

We describe now how objects like belief change operators,
singular changes and so on are related to FOTPC formulas.

Encoding as Model-Checking Internally, we use the
standard truth-functional semantics of first-order logic for
FOTPC. Therefore, we translate a belief change operator,
respectively the known part of it, into a first-order structure.

The general idea is to define a structure A by the follow-
ing pattern: The universe UA consists of all propositional
interpretations Ω, all formulas from L and all considered
epistemic states from Ψ, i.e., the total preorders over Ω. We
represent formulas by their models, i.e., by elements of2

P(Ω). The rationale is that, because of (sAGM5es*), the
considered belief change operators are insensitive to syn-
tactic differences. Additionally, predicates are interpreted in
the straight-forward manner, e.g., Int is interpreted as all
propositional interpretations, IntA = Ω, and LessEQ al-
lows access to the total preorder Ψ of each epistemic state,
LessEQA = {(ω1, ω2,Ψi) | (ω1, ω2) ∈ Ψi}. Depending
on whether a full change operator, a singular change, or an-
other sub-problem is considered, some special treatment is
necessary.

For instance, consider the signature Σ = {a, b}, yielding
the interpretations Ω = {ab, ab, ab, ab}. Moreover, consider
the singular change C = (Ψ0, α,Ψ1), where Ψ0 =60 is
the total preorder treating every interpretation to be equally
plausible, i.e., ab =0 ab =0 ab =0 ab. Furthermore, let
α = a. The total preorder Ψ1 =61 treats all a-models
to be equally plausible, but prefers them over all non a-
models, which are considered to be equally plausible, i.e.
ab =1 ab <1 ab =1 ab. We construct a structure AC as fol-
lows: The universe is given by UAC = Ω∪{Ψ0,Ψ1}∪P(Ω).
The predicates and function symbols are interpreted accord-
ing to Figure 2. The terms e0 and a are interpreted as
eAC

0 = Ψ0 and aAC = Mod(α).

2P(·) is the powerset function.



Figure 3: Input fields for the change from Ψ0 to Ψ1 by α = a in Alchourron.

In summary, the CERTIFICATION-PROBLEM of whether
C satisfies (CR1) is expressed as a model-checking problem
for FOTPC, i.e., a change C satisfies the postulate (CR1) if
AC |= ϕ(CR1) holds, where ϕ(CR1) is the formula given in (1).

5 Implementation
We provide an implementation of the approach by combin-
ing independent, self-developed Java libraries. The approach
is publicly accessible by a web-frontend called Alchour-
ron3, which expands on the previous work by Sauerwald
and Haldimann (Sauerwald and Haldimann 2019). The cur-
rently available version allows the specification of a singular
belief change using a browser-based client. First, the user
decides on a propositional signature for the language of the
belief change. Then a prior total preorder, an input formula,
as well as the posterior total preorder is entered. Figure 3
illustrates the belief change input.

After specifying the change, Alchourron allows the user
to check whether several preconfigured belief change postu-
lates are satisfied. Optionally, a user can also enter her own
postulate by defining a first-order formula using FOTPC. For-
mulas are described in TPTP syntax (Sutcliffe 2017), e.g., the
postulate (CR1) from Section 4 can be expressed as follows:

! [W1,W2] :
((int(W1) & int(W2) & mod(W1, A) & mod(W2,

A))
=> (lesseq(W1, W2, E0)

<=> lesseq(W1, W2, op(E0, A))))

Internally, Alchourron has a client-server architecture.
The implementation is highly modularized, and we expect
reusability of components for further projects. In particular,
postulate checking via compilation into a model-checking
problem as described in Section 4 is happening completely
on the server side. Display of total preorders is provided by
web components4 that can also represent ordinal conditional
functions (Spohn 1988), which for instance implement total
preorders, but provide also more fine-grained representations

3Visit: https://www.fernuni-hagen.de/wbs/alchourron/
4Heltweg, P.: Logic components, 2021. DOI: 10.5281/zenodo.

4744650.

of epistemic states. Our implementation of logic is an ex-
tensive institution-inspired implementation called Logical
Systems5, which allows representation and evaluation of a
variety of different logics in a unified way. Preconfigured
postulates are stored in TPTP syntax and parsed from there6,
mapping TPTP specified formula into our internal represen-
tation.

6 Summary and Future Work
We proposed FOTPC, a first-order fragment to describe be-
lief change postulates, complemented with a methodology to
construct a finite structure for a belief change operator, em-
ploying total preorders as representation of epistemic states.
With this toolset, the certification of belief change operators
can be understood as a model-checking problem. We pre-
sented our implementation, which is available online3, as a
proof of concept for our approach for singular belief changes.
In summary, we defined and formalized the certification prob-
lem and provide an implementation therefore.

While this is only the first proposal, we expect that this
approach will be highly flexible regarding improvements and
extensions. In particular, for future work we want to expand
our approach to more complex representations of epistemic
states. Moreover, we will work to improve the efficiency of
the implementation.

5Sauerwald, K.: Logical Systems, 2021, github.com/Landarzar/
logical-systems.

6Steen, A.: Scala TPTP parser, 2021. DOI: 10.5281/zenodo.
4672395.

https://www.fernuni-hagen.de/wbs/alchourron/
https://zenodo.org/badge/latestdoi/365273738
https://zenodo.org/badge/latestdoi/365273738
https://github.com/ Landarzar/logical-systems
https://github.com/ Landarzar/logical-systems
https://zenodo.org/badge/latestdoi/328686203
https://zenodo.org/badge/latestdoi/328686203
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