Of judges, aliens and total preorders

Heltweg, Philip pheltweg@gmail.com

University of Hagen

March 13th, 2021

Table of Contents

- Introduction
- Pormal Background
- 3 Additional metadata for tpo revision
- Booth and Meyer tpo-revision operators
- Iterating: <u>≺</u>-revision

Table of Contents

- Introduction
- 2 Formal Background
- 3 Additional metadata for tpo revision
- 4 Booth and Meyer tpo-revision operators
- Iterating: <u>≺</u>-revision

Motivation

How should a judge change their worldview when presented with new information?

Research Context

- Philosophy and artificial intelligence [Fermé and Hansson, 2011]
- Belief change [Darwiche and Pearl, 1997]
 - Nonmonotonic logic
 - Probabilistic reasoning
 - Belief revision
- One-step vs. iterated belief revision

Different types of belief

- Belief set [Alchourrón et al., 1985]
- Conditional beliefs [Darwiche and Pearl, 1997]
- Strategy to change conditional beliefs [Booth and Meyer, 2011]

Research question

- conditional belief revision operators
- axiomatisation of a family of operators by defining properties
- discuss properties and define concrete example

Table of Contents

- Introduction
- Pormal Background
- 3 Additional metadata for tpo revision
- 4 Booth and Meyer tpo-revision operators
- Iterating: <u>≺</u>-revision

Courtroom example 1

- The agent is a judge in a murder trial, "John" and "Mary" are suspects, the victim might be an alien
- $\bullet \ \Sigma = \{p, q, r\}$
 - p = "John is the murderer"
 - q = "Mary is the murderer"
 - r = "The victim is an alien"
- $Int(\Sigma) = W = \{000, 001, 010, 011, 100, 101, 110, 111\}$
- $Mod(p) = [\![p]\!] = \{100, 101, 110, 111\}, 100 \in [\![p]\!]$
- ullet Lower case greek letters used for formulas lpha

Belief Sets

- Set of propositions the agent accepts as true at any point in time [Fermé and Hansson, 2011]
- Deductively closed
- Possible for example: $Cn(\{p \lor q, \neg (p \land q), \neg r\})$

Belief Set Revision Postulates²

- AGM theory for belief set revision
- minimal change for belief set with new information
- no restrictions on the changes in conditional beliefs

Epistemic States

- abstract entity $\mathbb E$ that contain all information an agent need for their reasoning [Darwiche and Pearl, 1997]
- \bullet strategy for reasoning can be modeled as tpo $\leq_{\mathbb{E}}$ over worlds
- ullet belief sets $B(\mathbb{E})$ can be extracted from epistemic states
 - Set of most plausible worlds $min(\top, \leq_{\mathbb{E}})$
 - ullet All sentences true in those worlds: $Th(min(\top, \leq_{\mathbb{E}}))$

Total preorders

- Common tool to handle preference orderings over propositional worlds [Booth and Meyer, 2011]
- binary relation ≤, total, reflexive, transitive
- \bullet < strict, \sim symmetric closure

Preorder example

- Judge beliefs
 - Murderer probably acted alone but possible that they conspired
 - Unlikely, but not impossible, for the victim to be an alien
- \leq over W: $010 \sim 100 < 000 \sim 110 < 011 \sim 101 < 001 \sim 111$

Preorder visualisation

- $\bullet \ [[x]]_{\sim} = \{y \mid y \sim x\}$
- $[[x]] \leq [[y]]$ iff $x \leq y$

R_1	R_2	R_3	R_4
010	000	011	001
100	110	101	111

Table 1: Visualizing a tpo as a linearly ordered set of ranks, as done in [Booth et al., 2006]

4□ > 4□ > 4 = > 4 = > = 90

Conditional Belief Revision Postulates³

- (CR1) If $v \in [\![\alpha]\!], w \in [\![\alpha]\!]$ then $v \leq_{\mathbb{E}} w$ iff $v \leq_{\mathbb{E}*\alpha} w$
- (CR2) If $v \in \llbracket \neg \alpha \rrbracket, w \in \llbracket \neg \alpha \rrbracket$ then $v \leq_{\mathbb{E}} w$ iff $v \leq_{\mathbb{E}*\alpha} w$
- (CR3) If $v \in [\![\alpha]\!], w \in [\![\neg \alpha]\!]$ then $v <_{\mathbb{E}} w$ only if $v <_{\mathbb{E}*\alpha} w$
- (CR4) If $v \in [\![\alpha]\!], w \in [\![\neg \alpha]\!]$ then $v \leq_{\mathbb{E}} w$ only if $v \leq_{\mathbb{E}*\alpha} w$

³by Darwiche and Pearl [Darwiche and Pearl, 1997] □ → ⟨♂ → ⟨∑ → ⟨∑ → ⟨ ≥ → ⟨ ≥ → ⟨ 2 → | 2 →

Table of Contents

- Introduction
- 2 Formal Background
- 3 Additional metadata for tpo revision
- 4 Booth and Meyer tpo-revision operators
- 5 Iterating: <u>≺</u>-revision

Enriching Epistemic States

- Additional structure $W^{\pm} = \{x^{\epsilon} \mid x \in W \text{ and } \epsilon \in \{+, -\}\}$
- Interval representing a world (w^+,w^-)
- Worlds are either supported by evidence or not $w \in [\![\alpha]\!]$ / $w \in [\![\neg \alpha]\!]$

≤-faithful tpo

- ullet original tpo \leq was an order over W
- ullet \leq over new W^\pm

≤-faithful tpo - definition

- (≤ 1) \leq is a tpo over W^{\pm}
- $(\preceq 2)$ $x^+ \preceq y^+ \text{ iff } x \leq y$
- $(\preceq 3)$ $x^- \preceq y^- \text{ iff } x \leq y$
- $(\preceq 4)$ $x^+ \prec x^-$

Definition 1 (\leq -faithful tpo over W^{\pm} [Booth and Meyer, 2011])

Let $\preceq \subseteq W^{\pm} \times W^{\pm}$. If \preceq satisfies $(\preceq 1)$ - $(\preceq 4)$, we say \preceq is a \leq -faithful tpo (over W^{\pm}).

≤-faithful tpo visualisation

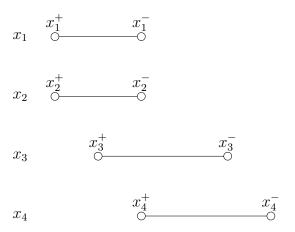


Figure 1: Representation of \leq over W^{\pm} using intervals

Courtroom example: ≤-faithful tpo

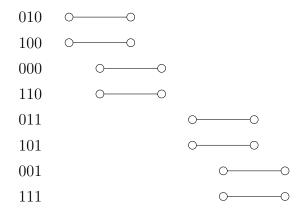


Figure 2: Representation of \leq over W^{\pm} for the courtroom example

Table of Contents

- Introduction
- 2 Formal Background
- 3 Additional metadata for tpo revisior
- Booth and Meyer tpo-revision operators
- 5 Iterating: <u>≺</u>-revision

BM tpo-revision operator

Definition 2 (Revision operator $*_{\preceq}$ for \leq generated by \leq [Booth and Meyer, 2011])

For each \leq -faithful tpo \preceq over W^{\pm} , refer to $*_{\preceq}$ as the revision operator for \leq generated by \preceq defined by: Set for any $\alpha \in L$ and $x \in W$:

$$r_{\alpha}(x) = \left\{ \begin{array}{l} x^{+} \text{ if } x \in \llbracket \alpha \rrbracket \\ x^{-} \text{ if } x \in \llbracket \neg \alpha \rrbracket \end{array} \right.$$

The revised tpo \leq_{α}^* is defined by setting, for each $x,y\in W$,

$$x \leq_{\alpha}^{*} y \text{ iff } r_{\alpha}(x) \leq r_{\alpha}(y)$$

Courtroom example: Revision Visualised

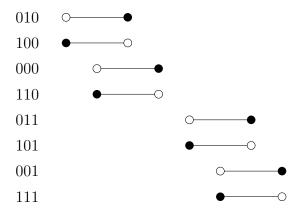


Figure 3: Associating positive and negative representations of worlds after receiving evidence $\alpha=p$

Courtroom example: Revision 1

• for $010, 110 \in W$, 010 < 110 before, revise by $\alpha = p$

$$010 \in \llbracket \neg \alpha \rrbracket : r_{\alpha}(010) = 010^{-}$$

 $110 \in \llbracket \alpha \rrbracket : r_{\alpha}(110) = 110^{+}$

- $110^+ \prec 010^-$ is true, set $110 <_{\alpha}^* 010$
- new tpo \leq_{α}^* is: $100 <_{\alpha}^* 110 <_{\alpha}^* 010 <_{\alpha}^* 000 <_{\alpha}^* 101 <_{\alpha}^* 111 <_{\alpha}^* 011 <_{\alpha}^* 001$

Courtroom example: Revision 2

- new tpo \leq_{α}^* is: $100 <_{\alpha}^* 110 <_{\alpha}^* 010 <_{\alpha}^* 000 <_{\alpha}^* 101 <_{\alpha}^* 111 <_{\alpha}^* 011 <_{\alpha}^* 001$
- $min(\top, \leq_{\alpha}^*) = \{100\}$: "John is the murderer and the victim is not an alien".
- \leq_{α}^* as representation of the conditional beliefs
 - before 010 < 110: "Both suspects being the murderer is less plausible than only Mary being the murderer"
 - now $110 <^*_{\alpha} 010$: "Only Mary being the murderer less plausible than both conspiring".

Properties of BM Revision Operators: Basic properties

```
(*1) \leq_{\alpha}^{*} is a tpo over W
```

(*2)
$$\alpha \equiv \gamma \text{ implies } \leq_{\alpha}^* = \leq_{\gamma}^*$$

Properties of BM Revision Operators: Common rules in iterated belief change

(*3) If
$$x, y \in [\alpha]$$
 then $x \leq_{\alpha}^{*} y$ iff $x \leq y$

(*4) If
$$x, y \in \llbracket \neg \alpha \rrbracket$$
 then $x \leq_{\alpha}^{*} y$ iff $x \leq y$

(*5) If
$$x \in [\![\alpha]\!], y \in [\![\neg \alpha]\!]$$
 and $x \le y$ then $x <_{\alpha}^* y$

Properties of BM Revision Operators: Supplementary rationality properties

(*6) If
$$x \in [\![\alpha]\!], y \in [\![\neg \alpha]\!]$$
 and $y \leq_{\alpha}^* x$ then $y \leq_{\gamma}^* x$

(*7) If
$$x \in [\alpha], y \in [\neg \alpha]$$
 and $y <_{\alpha}^* x$ then $y <_{\gamma}^* x$

Family of BM Revision Operators

Theorem 1

```
Let * be any revision operator for \leq. Then * is generated from some \leq-faithful tpo \leq over W^{\pm} iff * satisfies (*1)-(*7). [Booth and Meyer, 2011]
```

Non-priotized revision

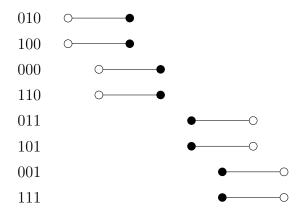


Figure 4: Non-prioritised revision by $\alpha=r$

Table of Contents

- Introduction
- 2 Formal Background
- 3 Additional metadata for tpo revision
- 4 Booth and Meyer tpo-revision operators
- 5 Iterating: <u>≺</u>-revision

A concrete operator 4: Setup

- Function p mapping worlds to real numbers: $p:W^{\pm}\mapsto\mathbb{R}$
- Interval representing a world x: $(p(x^+), p(x^-))$
- Distance between representations: $p(x^-) p(x^+) = a > 0$
- Define a tpo from p: $x^{\epsilon} \leq_p y^{\delta}$ iff $p(x^{\epsilon}) \leq p(y^{\delta})$

A concrete operator: Iteration

- Choose initial p so that $\leq_p = \leq$
- Revise p by α to $p * \alpha$, for every $x^{\epsilon} \in W^{\pm}$:

$$(p * \alpha)(x^{\epsilon}) = \begin{cases} p(x^{\epsilon}) \text{ if } x \in \llbracket \alpha \rrbracket \\ p(x^{\epsilon}) + a \text{ if } x \in \llbracket \neg \alpha \rrbracket \end{cases}$$

• Define a revised tpo $\leq_{p*\alpha}$ from $p*\alpha$: $x^{\epsilon} \leq_{p*\alpha} y^{\delta}$ iff $(p*\alpha)(x^{\epsilon}) \leq (p*\alpha)(y^{\delta})$

Courtroom Example: A concrete operator

- $\leq_{p*\alpha}$ for $\alpha = p$
- Choose initial p so that $\leq_p = \leq$
 - $010: (p(010^+), p(010^-)) = (0, a).$
 - $100: (p(100^+), p(100^-)) = (0, a).$
- Revise p by α to $p * \alpha$
 - $010 \in \llbracket \neg \alpha \rrbracket : (p(010^-), p(010^-) + a) = (a, 2a)$
 - $100 \in \llbracket \alpha \rrbracket : (p(100^+), p(100^-)) = (0, a)$

Courtroom Example: Visualised

Figure 5: $\leq_{p*\alpha}$ for $\alpha = p$

Courtroom Example: Conditional beliefs 1

010	×		OO
100	×		OO
000		×	0
110		×	0
011			OO
101			0
001			0
111			0

Figure 6: $\leq_{p*\alpha}$ for $\alpha = r$

Courtroom Example: Conditional beliefs 2

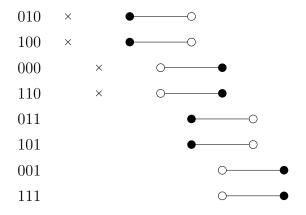


Figure 7: $\leq_{p*\alpha*\beta}$ for $\beta=(p\vee q)\wedge(\neg p\vee \neg q)$

Thank You

References I

Alchourrón, C. E., Gärdenfors, P., and Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions.

Journal of Symbolic Logic, 50:510–530.

Booth, R. and Meyer, T. (2011).

How to revise a total preorder.

Journal of Philosophical Logic, 40:193–238.

Booth, R., Meyer, T. A., and Wong, K.-S. (2006). A bad day surfing is better than a good day working: How to revise a total preorder. In *KR*, pages 230–238.

4 D > 4 D > 4 E > 4 E > E 990

References II

Darwiche, A. and Pearl, J. (1997).
On the logic of iterated belief revision.

Artificial Intelligence, 89:1–29.

Fermé, E. and Hansson, S. O. (2011).

Agm 25 years: Twenty-five years of research in belief change article in journal of philosophical logic.

J Philos Logic, 40:295–331.